

Numerical Relativity Examples

Ian Hinder, May 2017

Selected milestones in Numerical Relativity -Pre-revolutionary

Arnowitt, Deser and Misner - ADM formalism: initial value problem for	Arnowitt, Deser and Misner - ADM formalism: initial value	oroblem for GF
--	---	----------------

- Hahn and Lindquist: **first numerical solution** to the Einstein equations: attraction between two wormholes in axisymmetry, 51x51 grid points
- 1980s Piran, Stark **gravitational waves** in axisymmetry from formation of axisymmetric BH
- 1980s Choptuik **Critical collapse** with adaptive mesh refinement
- 1990s Binary Black Hole Grand Challenge Head-on BBH collision
- to 2005 Development of **formulations**, **coordinate conditions**, **excision** techniques, wave extraction formalisms.

Finite simulation lifetime, solutions unstable, much frustration

Numerical Relativity examples - Ian Hinder

Milestones of Numerical Relativity -The revolution begins

2005 **Pretorius** is the first to successfully evolve **more than one orbit of a BBH** through **merger and ringdown** and compute the **gravitational waveform**

Numerical Relativity examples - Ian Hinder

What does a BBH waveform look like?

Before 2005: Kip Thorne's sketch

.

• After 2005: Numerical Relativity (e.g. Baker et al. 2007)

Numerical Relativity examples - Ian Hinder

Selected milestones in Numerical Relativity -The Golden Age

- 2005 Pretorius, long-term stable method for orbit using excision, finite difference methods and adaptive mesh refinement, generalised harmonic formulation
- 2005 Goddard and Brownsville groups: **Moving puncture** method (no excision): **finite differences**, **BSSN formulation**
- 2007 Campanelli et al., Gonzalez et al. Unexpectedly high "**super-kick**" of merging BHs for certain **spin** orientations
- 2011 Lovelace, Scheel, Szilagyi Breaking the **high spin limit** (~0.93) of Bowen-York conformally flat initial data
- 2015 Waveform models built on NR results used in **LIGO** searches and parameter estimation for **first gravitational wave detection**

Numerical Relativity examples - Ian Hinder

What can we do today?

- **Stable** long evolutions of **moderate** BBH configurations:
 - Mass ratio $q = m_1/m_2 \lesssim 8$
 - Spins chi = S/m² ≤ 0.6
 - Number of orbits $N \leq 40$

Numerical Relativity examples - Ian Hinder

Examples

A binary black hole simulation

- Near zone:
 horizons
- Far zone: waves
- Postprocessing:
 strain timeseries in LIGO format

Numerical Relativity examples - Ian Hinder

Warped spacetime and horizons

Simulating eXtreme Spacetimes (SXS)

Numerical Relativity examples - Ian Hinder

3D gravitational waves

Simulation: Geoffrey Lovelace, Visualisation: Ian Hinder Simulating eXtreme Spacetimes (SXS) - <u>black-holes.org</u>

Numerical Relativity examples - Ian Hinder

What would GW150914 look like up close?

Simulating eXtreme Spacetimes (SXS) - <u>black-holes.org</u>

Numerical Relativity examples - Ian Hinder

Open source Numerical Relativity

Open-source Numerical Relativity

- Cactus framework: open source, developed by Ed Seidel's group at the Albert Einstein Institute in the late 90s
- Foundation of many NR codes today
- **Einstein Toolkit** is an entirely open source set of NR codes based around Cactus. See <u>einsteintoolkit.org/gallery.html</u> for examples
- **GW150914 example**, including fully open parameter file, instructions, and **tutorials** for analysis and visualisation [Wardell, Hinder, Bentivegna]
 - <u>einsteintoolkit.org/gallery/bbh</u>
 - Simulate GW150914 on ~100 cores in a few days **yourself**!

Numerical Relativity examples - Ian Hinder

einsteintoolkit.org

SIMULATION DATA

Lightweight simulation data with only a small number of iterations of 3D output is available for download from Zenodo:

DOI 10.5281/zenodo.60213

The full simulation comprises several terabytes of data and can be made available upon request.

MAGES AND MOVIES

Horizons

The real part of Ψ_4 , the component of the Riemann tensor representing outgoing gravitational radiation.

Elevation plot of the magnitude of Ψ_4 on the equatorial plane at t=0.

Horizon coordinate trajectories

Coordinate tracks of the centroids of the apparent horizons showing inspiral of the binary due to emission of energy and angular momentum in gravitational waves

Gravitational waveform

Curvature scalars

einsteintoolkit.org

Hardware

Why supercomputers?

- Need to store at least one 3D
 t = const grid of data in memory
- **Too many points** and too many variables to fit in a workstation

- Supercomputer consists of many individual nodes connected by a fast low-latency network
- Split up the grid into blocks and run each on a separate node
- Parallel programming required!

AEI Potsdam NR cluster: Minerva

- 38 TB of main memory
- 594 nodes (9504 cores)
- 302.4 TFLOPS (3 \times 10¹⁴ calculations per second)

- 58 Gb/sec communication network
- 500 TB of disk space
- Used for Numerical Relativity: binary black hole and neutron star simulations

