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Selected milestones in Numerical Relativity - 
Pre-revolutionary

1959	 Arnowitt, Deser and Misner - ADM formalism: initial value problem for GR 

1964	 Hahn and Lindquist: first numerical solution to the Einstein equations: 
attraction between two wormholes in axisymmetry, 51x51 grid points 

1980s	 Piran, Stark - gravitational waves in axisymmetry from formation of 
axisymmetric BH 

1980s	 Choptuik - Critical collapse with adaptive mesh refinement 

1990s	 Binary Black Hole Grand Challenge - Head-on BBH collision 

to 2005	 Development of formulations, coordinate conditions, excision 
techniques, wave extraction formalisms. 
 
Finite simulation lifetime, solutions unstable, much frustration
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Milestones of Numerical Relativity - 
The revolution begins

2005	 Pretorius is the first to successfully evolve more than one orbit of a BBH 
through merger and ringdown and compute the gravitational waveform
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light are equal to 1):

gδγgαβ,γδ + gγδ
,βgαδ,γ + gγδ

,αgβδ,γ + 2H(α,β)

−2HδΓ
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−κ (nαCβ + nβCα − gαβnγCγ) . (1)

Hµ are (arbitrary) source functions encoding the gauge-
freedom of the solution, Γδ

αβ are the Christoffel symbols,
Tαβ is the matter stress tensor with trace T , κ is a pos-
itive constant multiplying the new constraint damping
terms following[13], nµ = 1/α(∂/∂t)µ − βi/α(∂/∂xi)µ is
the unit hypersurface normal vector with lapse function
α and shift vector βi (x0 ≡ t, xi ≡ [x1, x2, x3] ≡ [x, y, z]),
and Cµ are the constraints:

Cµ ≡ Hµ − gµν!xν . (2)

We use the following to evolve the source functions:

!Ht = −ξ1
α − 1

αη
+ ξ2Ht,νnν , Hi = 0 (3)

where ξ1 and η are positive constants. Note that (3) is
not the usual definition of spatial harmonic gauge, which
is defined in terms of contravarient components Hµ.

We use scalar field gravitational collapse to prepare ini-
tial data that will evolve towards a binary black hole sys-
tem. Specifically, at t = 0 we have two Lorentz boosted
scalar field profiles, and choose initial amplitude, sepa-
ration and boost parameters to approximate the kind of
orbit that the black holes (which form as the scalar field
collapses) will have. The procedure used to calculate the
initial geometry is based on standard techniques[14], and
is a straight forward extension of the method described
in[9] to include non-time-symmetric initial data. The ini-
tial spatial metric and its first time derivative is confor-
mally flat, and we specify a slice that is maximal and
harmonic. The Hamiltonian constraint is used to solve
for the conformal factor. The maximal conditions K = 0
and ∂tK = 0 (K is the trace of the extrinsic curvature)
give the initial time derivative of the conformal factor
and an elliptic equation for the lapse respectively. The
momentum constraints are used to solve for the initial
values of the shift vectors, and the harmonic conditions
Hµ = 0 are used to specify the initial first time deriva-
tives of the lapse and shift.

III. Results: In this section we describe results from the
evolution of one example of a scalar field constructed bi-
nary system. The present code requires significant com-
putational resources to evolve binary spacetimes[18], and
thus to study the orbital, plunge, and ringdown phases
of a binary system in a reasonable amount of simulation
time we chose initial data parameters such that the black
holes would merge within roughly one orbit—see Fig. 1
and Table I. The following evolution parameters in (1)
and (3) were chosen: κ ≈ 1.25/M0, ξ1 ≈ 19/M0, ξ2 ≈
2.5/M0, η = 5 (these parameters did not need to be
fine tuned), where M0 is the mass of one black in the

FIG. 1: A depiction of the orbit for the simulation described
in the text (see also Table I). The figure shows the coordinate
position of the center of one apparent horizon relative to the
other, in the orbital plane z = 0. The units have been scaled
to the mass M0 of a single black hole, and curves are shown
from simulations with three different resolutions. Overlaid on
this figure are reference ellipses of eccentricity 0, 0.1 and 0.2,
suggesting that if one were to attribute an initial eccentricity
to the orbit it could be in the range 0 − 0.2.

binary. This system was evolved using three different
grid hierarchies, which we label as “low”, “medium” and
“high” resolution. The low resolution simulation has a
base grid of 323, with up to 7 additional levels of 2 : 1
refinement (giving a resolution in the vicinity of the black
holes of ≈ M0/10). For computational efficiency we only
allowed regridding of level 6 and higher (at the expense
of not being able to accurately track out-going waves).
For the medium resolution simulation, we have one ad-
ditional level of refinement during the inspiral and early
phases of the merger, though have the same resolution
over the coarser levels and at late times; thus we are
able to resolve the initial orbital dynamics more accu-
rately with the medium compared to low resolution run,
though both have roughly the same accuracy in the wave
zone. The high resolution simulation has up to 10 lev-
els of refinement during the inspiral and early ringdown
phase, 9 levels subsequently, and the grid structure of the
lower levels is altered so that there is effectively twice the
resolution in the wave zone. The reason for this set of hi-
erarchies is again for computational efficiency: doubling
(quadrupling) the resolution throughout the low resolu-
tion hierarchy would have required 16 (256) times the
computer time, which in particular for the higher resolu-
tion simulation is impractical to do at this stage.

Fig. 2 shows the horizon masses and final horizon an-
gular momentum as a function of time. The ADM mass
of the space time suggests that approximately 15% of the
total scalar field energy does not collapse into black holes.
The remnant scalar field leaves the vicinity of the orbit
quite rapidly (in t ≈ 30M0, which is on the order of the
light crossing time of the orbit). Black hole masses are
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FIG. 3: A sample of the gravitational waves emitted during
the merger, as estimated by the Newman-Penrose scalar Ψ4

(from the medium resolution simulation). Here, the real com-
ponent of Ψ4 multiplied by the coordinate distance r from the
center of the grid is shown at a fixed angular location, though
several distances r. The waveform has also been shifted in
time by amounts shown in the plot, so that the oscillations
overlap. If the waves are measured far enough from the cen-
tral black hole then the amplitudes should match, and they
should be shifted by the light travel time between the loca-
tions (i.e. by 25M0 in this example). That we need to shift the
waveforms by more than this suggests the extraction points
are still too close to the black hole; the decrease in amplitude
is primarily due to numerical error as the wave moves into
regions of the grid with relatively low resolution.

binary system, and so possibly in a region where (6) is
not strictly valid. However, the larger integration radii
are in regions of the grid that do not have very good
resolution (due both to the mesh refinement structure
and the spatially compactified coordinate domain), and
so numerical error (mostly dissipation) tends to reduce

the amplitude of the waves with distance from the source.
With all these caveats in mind, the numbers we obtain
from (6) are 4.7%, 3.2%, 2.7%, 2.3% at integration radii
of 25M0, 50M0, 75M0 and 100M0 respectively (from the
high resolution simulation[20]), and where the percent-
age is relative to 2M0. Another estimate of the radiated
energy can be obtained by taking the difference between
the final and initial horizon masses (Table I)—this sug-
gests around 5% (high resolution case).

V. Conclusion: In this letter we have described a nu-
merical method based on generalized harmonic coordi-
nates that can stably evolve (at least a class of) bi-
nary black hole spacetimes. As an example, we pre-
sented an evolution of a binary system composed of non-
spinning black holes of equal mass M0, with an initial
proper separation and orbital angular velocity of approx-
imately 16.6M0 and 0.023/M0 respectively. The binary
merged within approximately 1 orbit, leaving behind a
blackhole of mass Mf ≈ 1.9M0 and angular momentum
J ≈ 0.70M2

f . A calculation of the energy emitted in
gravitational waves indicates that roughly 5% of the ini-
tial mass (defined as 2M0) is radiated . Future work
includes improving the accuracy of simulation (in par-
ticular the gravitational waves), exploring a larger class
of initial conditions (binaries that are further separated,
have different initial masses, non-zero spins, etc.), and
attempting to extract more geometric information about
the nature of the merger event from the simulations.
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What does a BBH waveform look like?

• Before 2005: Kip Thorne's sketch

holes with minimal eccentricity, as gravitating binary sys-
tems of comparable-mass objects are expected to circular-
ize rapidly through the emission of gravitational radiation.
We have selected an initial black-hole configuration with
the relatively low eccentricity of less than 1%, as measured
below.

Figure 1 shows the gravitational-wave strain generated
by our highest-resolution numerical run and that predicted
by the PN approximation with 3.5PN phasing [14,15] and
2.5PN (beyond leading order) amplitude accuracy [16].
The waves are based on the dominant l ! 2, m ! 2 spin-
weighted spherical harmonic of the radiation, and repre-
sent an observation made on the system’s equatorial plane,
where only one polarization component contributes to the
measured strain. The initial phase and time of the waves
have been adjusted so that the frequency and phase for each
waveform agree at a point, t ! "1000M, that is early in
the simulation, but after transient effects from the initial
data have subsided. We will quantify the phase agreement
below using the frequency domain, so that the time shift-
ing, done for illustrative purposes in Fig. 1, will have no
impact on the subsequent analysis.

To conduct comparisons with PN calculations, we need
to extract an instantaneous gauge-invariant polarization
phase ! and angular frequency ! from our simulations.
These are derived from the gravitational-wave strain’s first
time derivative, which is a robust quantity in the numerical
data. This frequency corresponds to the sweep rate of the
polarization angle of the circularly polarized gravitational
wave that can be observed on the system’s rotation axis.

We define eccentricity as a deviation from an underlying
smooth, secular trend. We obtain a monotonic ‘‘secular’’
frequency-time relation by modeling the waveform angular
frequency ! as a fourth-order monotonic polynomial

!c#t$, plus an eccentric modulation of the form d!#t$ !
!#t$ "!c#t$ ! A sin %!#t$&, where !#t$ is a quadratic
function of time. Fitting this equation to our data yields
A ! 8#' 1$ ( 10"4M"1. For Keplerian systems, con-
served angular momentum is proportional to r2!, so the
eccentricity corresponds to half the fractional amplitude of
the frequency modulation: e ! A=#2!$. In our case the
eccentricity starts near 0.008, decreasing by a factor of 3 by
the time !cM ) 0:15. We will compare our simulation
with noneccentric PN calculations, with the expectation
that small eccentricities have a minimal effect on the
important underlying secular trend in the rate at which
frequency sweeps up approaching merger.

The phasing of the waveform is critical for gravitational-
wave observation. For data analysis, the optimal methods
for both detection and parameter estimation rely on
matched filtering, which employs a weighted inner product
that can be expressed in Fourier space as hh; si !R
df%~h*#f$~s#f$ + ~h#f$~s*#f$&=Sn#f$, where h is the tem-

plate being used, s is the signal being analyzed, and Sn is
the one-sided power spectral density of the detector’s noise
[17]. A template that maximizes hh; si will provide an
optimal filter. Therefore, the most crucial factor is the
relative phasing of the template and signal. The inner
product will cease to accumulate in sweeping through
frequency if the template and the signal evolve to be out
of phase with each other by more than a half-cycle, de-
creasing the effectiveness of the procedure.

Our key objective is to compare phasing between nu-
merical and PN waveforms. We can make a stronger
connection to the underlying physics while avoiding issues
with time alignment by comparing phases as a function of
polarization frequency, which corresponds to twice the
orbital frequency in the PN case. For circular inspiral this
frequency should grow monotonically in time, with the
frequency !c providing a physical reference of the ‘‘hard-
ness’’ of the tightening binary.

Circular inspiral phasing information is typically de-
rived in PN theory by imposing an energy balance relation
to deduce the rate at which !c evolves from the radiation
rate at a specified value of !c [1]. Though not strictly
derived in the PN context, this physically sensible condi-
tion currently allows the determination of the chirp rate
_!c#!c$ up to 3.5PN order [11]. From such a relation,

information about phase and time are determined by inte-
grating d!=d!c ! !c= _!c and dt=d!c ! 1= _!c. The
phasing information can be represented by any one of
several relations among phase, frequency, and time.
Various approaches take the PN-expanded representation
of one of these relations as the PN ‘‘result’’ for waveform
phasing [1,11,18]. It has been demonstrated [11] that the
PN expansion of _!c#!c$, numerically integrated as
needed, has the greatest utility for conducting comparisons
of phasing with numerical results during the late inspiral,
and we adopt that convention.

For the purpose of comparison with our numerical simu-
lations, we invert the monotonic function !c#t$ to obtain
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FIG. 1 (color online). Gravitational strain waveforms from the
merger of equal-mass Schwarzschild black holes. The solid
curve is the waveform from the high-resolution numerical simu-
lation, and the dashed curve is a PN waveform with 3.5PN order
phasing [14,15] and 2.5PN order amplitude accuracy [16]. Time
t ! 0 is the moment of peak radiation amplitude in the simula-
tion.

PRL 99, 181101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
2 NOVEMBER 2007

181101-2

• After 2005: Numerical Relativity 
(e.g. Baker et al. 2007)
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Selected milestones in Numerical Relativity -  
The Golden Age

2005	 Pretorius, long-term stable method for orbit using excision, finite difference 
methods and adaptive mesh refinement, generalised harmonic 
formulation 

2005	 Goddard and Brownsville groups: Moving puncture method (no excision): finite 
differences, BSSN formulation 

2007	 Campanelli et al., Gonzalez et al. - Unexpectedly high "super-kick" of merging 
BHs for certain spin orientations 

2011	 Lovelace, Scheel, Szilagyi - Breaking the high spin limit (~0.93) of Bowen-York 
conformally flat initial data 

2015	 Waveform models built on NR results used in LIGO searches and parameter 
estimation for first gravitational wave detection 
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What can we do today?

• Stable long evolutions of moderate BBH configurations: 

• Mass ratio q = m1/m2 ≲ 8 

• Spins chi = S/m2 ≲ 0.6 

• Number of orbits N ≲ 40



Examples
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A binary black hole simulation

• Near zone: 
horizons 

• Far zone: waves 

• Postprocessing: 
strain timeseries in 
LIGO format
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Warped spacetime and horizons

Simulating eXtreme Spacetimes (SXS)
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3D gravitational waves

Simulation: Geoffrey Lovelace, Visualisation: Ian Hinder  
Simulating eXtreme Spacetimes (SXS) - black-holes.org

http://black-holes.org
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What would GW150914 look like up close?

Simulating eXtreme Spacetimes (SXS) - black-holes.org

http://black-holes.org


Open source Numerical Relativity
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Open-source Numerical Relativity

• Cactus framework: open source, developed by Ed Seidel's group at 
the Albert Einstein Institute in the late 90s 

• Foundation of many NR codes today 

• Einstein Toolkit is an entirely open source set of NR codes based 
around Cactus.  See einsteintoolkit.org/gallery.html for examples 

• GW150914 example, including fully open parameter file, instructions, 
and tutorials for analysis and visualisation [Wardell, Hinder, Bentivegna] 

• einsteintoolkit.org/gallery/bbh 

• Simulate GW150914 on ~100 cores in a few days yourself!

http://einsteintoolkit.org/gallery.html
http://einsteintoolkit.org/gallery/bbh/


BlackHoles: analysing the physical properties of the black
holes
SimulationProperties: studying the numerical properties of the
simulation
Visualisation: visualising the 3D data generated by the
simulation.
Waveforms: extracting waveforms from the simulated
spacetime

SIMULATION DATA

Lightweight simulation data with only a small number of iterations
of 3D output is available for download from Zenodo:

DOIDOI 10.5281/zenodo.6021310.5281/zenodo.60213

The full simulation comprises several terabytes of data and can be
made available upon request.

IMAGES AND MOVIES

Horizons

 

The real part of , the component of the Riemann tensor
representing outgoing gravitational radiation.

Elevation plot of the magnitude of  on the equatorial plane at 
.

Gravitational waves

Ψ4

Ψ4
t = 0

einsteintoolkit.org

http://einsteintoolkit.org


Apparent horizons of the orbiting black holes (left) and first
common apparent horizon with colormap corresponding to the
magnitude of  (right).

Horizon coordinate trajectories

Coordinate tracks of the centroids of the apparent horizons
showing inspiral of the binary due to emission of energy and
angular momentum in gravitational waves

Gravitational waveform

Ψ4 The l=2, m=2 spherical harmonic mode of the gravitational wave
strain. The strain is what is measured by LIGO.

Curvature scalars

 

Scalar curvature invariants computed from the Riemann tensor, 
, and its dual, . Left: the Kretschmann scalar, 

. Right: the Chern-Pontryagin scalar, .
Rabcd

∗Rabcd
RabcdRabcd Rabcd

∗Rabcd

einsteintoolkit.org

http://einsteintoolkit.org


Hardware



Why supercomputers?
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• Need to store at least one 3D  
t = const grid of data in memory


• Too many points and too many 
variables to fit in a workstation
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• Supercomputer consists of many individual 

nodes connected by a fast low-latency 
network


• Split up the grid into blocks and run each 
on a separate node


• Parallel programming required!



AEI Potsdam NR cluster: Minerva

• 38 TB of main memory


• 594 nodes (9504 cores)


• 302.4 TFLOPS (3 × 1014 
calculations per second)


• 58 Gb/sec communication 
network


• 500 TB of disk space


• Used for Numerical Relativity: 
binary black hole and neutron star 
simulations


