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Introduction

• Eccentric binary systems circularise as E and L are emitted (Peters 1964) 

• Eccentricity of BBH expected to be 0 well before merger 

• Eccentric binaries in LIGO band? 

• Can we measure (bound) eccentricity of GW events such as GW150914? 

• Eccentric waveform model could be compared with GW data to 
measure/constrain eccentricity) 

• Construct and test such a model using Post-Newtonian approximation 
and Numerical Relativity 

• Only need late inspiral+merger; e.g. last 5 orbits for GW150914
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A selection of eccentric Numerical Relativity 
simulations

• 19 new accurate NR simulations, 
~25 cycles, SpEC code 

• Non-spinning 
• Initial eccentricity e ≤ 0.2 
• q = m1/m2 ≤ 3 e0 = 0.00

e0 = 0.20
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Eccentric simulation
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What does an eccentric BBH merger look like?

• Eccentric mergers are circular!
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What does an eccentric BBH merger look like?
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FIG. 3. Circularisation of q=3 non-spinning binary black hole waveforms: the waveform amplitude and frequency are independent of the initial
eccentricity for t > t

peak

� 30M (vertical line) to an accuracy of 4% (horizontal lines).

for a given (x0, e0, l0,�0). The model is expected to be a good
approximation of the relativistic dynamics when the separation is
large and the velocity is small, and will break down close to the
merger.

IV. MEASURING ECCENTRICITY

Given an eccentric waveform model, we may wish to use it to
measure the parameters of a GW signal. This amounts to deter-
mining (M, q, x(tref), e(tref), l(tref),�(tref); tref) at some reference
time tref. Since there is a freedom to choose tref, we quote the pa-
rameters at a fixed value of xref. For example, in Table I, we use
xref = 0.075.

In simplified terms, the parameters of a GW source are mea-
sured by comparing the measured GW strain data to the model,
and determining the model parameters which best reproduce the
data. Note that the measured parameters are therefore PN parame-
ters. There are plausible quasi-local GR definitions for the masses
and spins, and we can therefore ask what bias is introduced in
these measured parameters by using an approximate PN-based
model instead of a true GR (or NR) waveform. We can deter-
mine this by fitting the PN model to an NR waveform of known
masses and spins, and measuring the difference in the measured
parameters.

However, in the eccentric case, the situation is complicated by
the fact that there is no clear general relativistic definition of ec-
centricity with which to label an NR waveform. Our approach is

to define e and l of the NR system as the PN values for which
the agreement between the instantaneous NR and PN waveform
frequency, !22 = d/dt arg(h22), is maximised over a single ra-
dial period centred on a reference time at which x = xref. This
is possible because we find that the PN model we are using, with
3 PN conservative dynamics, agrees very well with NR over one
radial period, as shown in [37]. The dominant error in our model
is the 2 PN adiabatic evolution of x and e on timescales longer
than one radial period. If the agreement over one radial period
were not good, then it would be problematic to use PN to define
the eccentricity of an NR waveform.

We fit the PN model to the NR data as follows. First, we choose
a time window [t1, t2] in which to fit the eccentric PN model. We
then perform a least squares fit of !PN

2,2 (x, e, l) to !

NR
2,2 to deter-

mine (x, e, l). We then perform an additional fit of �PN
2,2 (x, e, l,�)

to �

NR
2,2 to determine �. This is the same procedure used in [37].

This fitting can be performed over any time interval, and gives
the best-fitting PN parameters over that one interval. Since the
NR and PN waveforms are not the same, the measured parameters
and the resulting waveform will depend on the choice of fitting
interval.

In Sec. VIII, we will compare the eccentric IMR model to the
NR waveforms. For this purpose, we choose to fit the PN model to
the NR waveform at x = 0.11, which typically occurs ⇡ 7 cycles
before the merger. The time interval used for fitting is centered
on this point with total width equal to the radial period P . Note
that the choice of fitting window therefore depends on x and P

from the fit. We use an iterative process, starting from an initial

GW instantaneous frequency (q=3) 
independent of e for t > tpeak - 30 M 

(similar for amplitude)

Eccentricity lost 
before merger

• Circularisation just 
before merger for q=1 
[Hinder et al. 2008] 

• Now extend to q=3 

• For all eccentricities, 

• Same waveform for 
t > tpeak - 30 M 

• Merger remnant has 
same mass and spin 

• Can use circular merger 
model
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https://arxiv.org/abs/0710.5167


Modelling the inspiral: the building blocks

• Post-Newtonian model: 

• Conservative motion (without 
inspiral): 

• constant E and L 

• eccentricity e, semi-major axis a 

• r, 𝜙 in E and L (3 PN) 

• Radiation reaction: 

• Adiabatic constants E and L 
integrated from 2 PN fluxes 

• Waveforms 0 PN (restricted 
approximation): 

• h+, hx in r, 𝜙
7

• See [IH et al. 2010] for details 

• Empirically found best 
agreement with NR for PN 
expansion variable x (TaylorT4 
x when e → 0)



PN developments

+ others
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The simulations and model presented here are restricted to the
case of non-spinning binaries. For interesting applications to grav-
itational wave data, the model will need to be extended to include
the effects of spin, otherwise it’s possible that the effects of ec-
centricity and spin could be confused. We also model only the
dominant ` = 2,m = ±2 spherical harmonic modes. While the
effects of subdominant modes are likely more important for ec-
centric systems than for circular systems, we expect the effects
to be small for the moderate eccentricities studied here . Finally,
while our model is fully 3 PN accurate in the conservative dynam-
ics, the radiation reaction terms are implemented only up to 2 PN,
in constrast to the model of [38] which is 3 PN in both the conser-

vative and radiative effects, and also contains improvements for
high mass ratios based on the test-mass limit. We expect that the
performance of our model during the early inspiral (when aligned
just before the merger) would be improved with these modifica-
tions, but we leave that to future work.
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D70, 104011 (2004), arXiv:gr-qc/0407049.
[31] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah, Phys.

Rev. D 77, 064035 (2008), arXiv:0711.0302.
[32] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah, Phys.

Rev. D 77, 064034 (2008), arXiv:0711.0250.
[33] K. Arun, Ph.D. thesis, Jawaharlal Nehru University, New Delhi

(2006).
[34] K. G. Arun, L. Blanchet, B. R. Iyer, and S. Sinha, Phys. Rev. D80,

124018 (2009), arXiv:0908.3854 [gr-qc].
[35] U. Sperhake et al., Phys. Rev. D78, 064069 (2008),

arXiv:0710.3823 [gr-qc].
[36] I. Hinder, B. Vaishnav, F. Herrmann, D. Shoemaker, and P. Laguna,

Phys.Rev. D77, 081502 (2008), arXiv:0710.5167 [gr-qc].
[37] I. Hinder, F. Herrmann, P. Laguna, and D. Shoemaker, Phys. Rev.

D82, 024033 (2010), arXiv:0806.1037 [gr-qc].
[38] E. A. Huerta et al., Phys. Rev. D95, 024038 (2017),

arXiv:1609.05933 [gr-qc].
[39] B. J. Kelly, J. G. Baker, W. D. Boggs, S. T. McWilliams, and J. Cen-

trella, Phys. Rev. D84, 084009 (2011), arXiv:1107.1181 [gr-qc].
[40] http://www.black-holes.org/SpEC.html.
[41] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder, O. Rinne,

and S. A. Teukolsky, Phys. Rev. D74, 104006 (2006), arXiv:gr-
qc/0607056 [gr-qc].

[42] B. Szilagyi, L. Lindblom, and M. A. Scheel, Phys. Rev. D80,
124010 (2009), arXiv:0909.3557 [gr-qc].

[43] L. T. Buchman, H. P. Pfeiffer, M. A. Scheel, and B. Szilagyi, Phys.
Rev. D86, 084033 (2012), arXiv:1206.3015 [gr-qc].

[44] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne,
Classical and Quantum Gravity 23, S447 (2006).

[45] H. Friedrich, Communications in Mathematical Physics 100, 525
(1985).

[46] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-
qc/0507014 [gr-qc].

[47] L. Lindblom and B. Szilagyi, Phys. Rev. D80, 084019 (2009),
arXiv:0904.4873 [gr-qc].

[48] D. A. Hemberger, M. A. Scheel, L. E. Kidder, B. Szilágyi,
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M. Boyle, B. Szilágyi, and L. E. Kidder, Class. Quant. Grav. 32,
105009 (2015), arXiv:1412.1803 [gr-qc].
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[26] G. Schäfer and N. Wex, Physics Lett. A 174, 196 (1993).
[27] N. Wex, Classical and Quantum Gravity 12, 983 (1995).
[28] T. Damour, A. Gopakumar, and B. R. Iyer, Phys. Rev. D70, 064028

(2004), arXiv:gr-qc/0404128.
[29] C. Königsdörffer and A. Gopakumar, Phys. Rev. D 73, 124012

(2006).
[30] R.-M. Memmesheimer, A. Gopakumar, and G. Schäfer, Phys. Rev.
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Validation of PN inspiral against Numerical 
Relativity

• NR and PN agree well in inspiral for last ~10 orbits
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Eccentric model construction
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Eccentric model construction: Merger

• Circular Merger Model (CMM): 

• One-parameter (q) family of e=0 
waveforms 

• Interpolate ω(t) and A(t) for  
q ∈ {1, 2, 4} from SXS public 
catalogue 

• Test against 4 additional e=0 
waveforms 

• Modelling error negligible
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FIG. 5. Tests of the circular merger model (CMM) for NR waveforms which were not used to construct it. Plotted in (a) and (b) are the GW frequency
and amplitude from NR simulations (solid curves) and the CMM (dashed curves). We see good agreement. In (c) and (d) are plotted the phase and
relative amplitude differences between NR and the CMM. (e) shows the real part of the ` = 2,m = 2 mode of the gravitational wave strain, and (f)
shows the unfaithfulness between NR and the CMM (see Sec. VII A).

waveform between tref and tcirc, so this procedure would result in
a merger waveform with a noticeable error in the time and phase
of the peak. This is not surprising, because the PN approximation
is not expected to be good so close to the merger.

Instead, we adopt a simple model for the time to merger �t and
fit it to the NR simulations. This model works very well, and es-
sentially guarantees that the final IMR model will have the wave-
form peak at the correct time, to within the errors in �t. Once we
have �t, we blend the eccentric PN waveform with the circular
NR interpolated model between tref and tcirc. There will be a dis-
crepancy between the model and NR in this region, but we hope

that this will not be significant. The validity of this model will be
assessed in Sec. VIII.

B. Time to merger

We want to determine �t = tpeak � tref given the parameters
at tref . The most general functional form would be

�t(q, e, l) =

1X

ijk=0

a

ijk

q

i

e

j

cos(kl � ↵

ijk

) (7)

Comparison between NR and CMM for 4 
quasi-circular waveforms not used to 

construct the model
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FIG. 5. Tests of the circular merger model (CMM) for NR waveforms which were not used to construct it. Plotted in (a) and (b) are the GW frequency
and amplitude from NR simulations (solid curves) and the CMM (dashed curves). We see good agreement. In (c) and (d) are plotted the phase and
relative amplitude differences between NR and the CMM. (e) shows the real part of the ` = 2,m = 2 mode of the gravitational wave strain, and (f)
shows the unfaithfulness between NR and the CMM (see Sec. VII A).

waveform between tref and tcirc, so this procedure would result in
a merger waveform with a noticeable error in the time and phase
of the peak. This is not surprising, because the PN approximation
is not expected to be good so close to the merger.

Instead, we adopt a simple model for the time to merger �t and
fit it to the NR simulations. This model works very well, and es-
sentially guarantees that the final IMR model will have the wave-
form peak at the correct time, to within the errors in �t. Once we
have �t, we blend the eccentric PN waveform with the circular
NR interpolated model between tref and tcirc. There will be a dis-
crepancy between the model and NR in this region, but we hope

that this will not be significant. The validity of this model will be
assessed in Sec. VIII.

B. Time to merger

We want to determine �t = tpeak � tref given the parameters
at tref . The most general functional form would be

�t(q, e, l) =

1X

ijk=0

a

ijk

q

i

e

j

cos(kl � ↵

ijk

) (7)
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Eccentric model construction: Transition

• Smoothly blend PN inspiral and circular merger

• Blending parameters from NR simulations 
• Most important: 

• Δt: where is the peak of the merger waveform? Fit from NR. Fit error ±1 M.
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Results: Waveform comparison

• Determine PN 
parameters of NR 
waveform via 1 
orbit fit ~7 cycles 
before peak 

• Optimise PN 
ωGW(x0, e0, l0) to get 
best agreement with 
NR

13



Results: Waveform comparison

• Typical case: good agreement over the ~25 cycles of the NR waveform
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FIG. 10. Gravitational wave strain comparison between IMR model and
NR. Top: quasi-circular case with q = 3; some dephasing is visible.
Middle: an eccentric equal-mass case, which shows excellent agreement.
Bottom: q = 3 with the highest eccentricity configuration, which shows
the worst agreement of all the cases.

In Fig. 10, we show Re[h22] from both NR and the model. In
the right panels, we focus on the merger and ringdown, and while
the agreement is not perfect, we see that the model largely agrees
with NR. There is some dephasing visible at early times for the
quasi-circular q = 3 case. The equal-mass case with moderate ec-
centricity agrees very well with NR. For the case with the highest
mass ratio and eccentricity, there is noticeable dephasing at early

times between the model and NR, which shows the limits of the
model in the (q, e) parameter space.

C. Phase

FIG. 11. Phase difference between IMR model and NR

Fig. 11 shows the phase error in the model waveform; �� =

arg h

NR
22 � arg h

model
22 . The plot is split into separate panels by

mass ratio. We see that the phase error of the circular case usu-
ally gives a lower bound on the error of the eccentric cases. For
most of the eccentricities, i.e. less than about 0.08, the phase er-
ror oscillates between the circular value and a value a few times
larger. There is no appreciable effect of eccentricity on the secular
growth of the phase error for these eccentricities, suggesting that
the effect of eccentricity on the error in the adiabatic evolution is

14



Results: Waveform comparison

• Worst case: dephasing of both Φ(t) (orbital oscillations) and l(t) (eccentric 
oscillations) 

• Agreement is worse 
for higher e 
and higher q
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FIG. 10. Gravitational wave strain comparison between IMR model and
NR. Top: quasi-circular case with q = 3; some dephasing is visible.
Middle: an eccentric equal-mass case, which shows excellent agreement.
Bottom: q = 3 with the highest eccentricity configuration, which shows
the worst agreement of all the cases.

In Fig. 10, we show Re[h22] from both NR and the model. In
the right panels, we focus on the merger and ringdown, and while
the agreement is not perfect, we see that the model largely agrees
with NR. There is some dephasing visible at early times for the
quasi-circular q = 3 case. The equal-mass case with moderate ec-
centricity agrees very well with NR. For the case with the highest
mass ratio and eccentricity, there is noticeable dephasing at early

times between the model and NR, which shows the limits of the
model in the (q, e) parameter space.

C. Phase

FIG. 11. Phase difference between IMR model and NR

Fig. 11 shows the phase error in the model waveform; �� =

arg h

NR
22 � arg h

model
22 . The plot is split into separate panels by

mass ratio. We see that the phase error of the circular case usu-
ally gives a lower bound on the error of the eccentric cases. For
most of the eccentricities, i.e. less than about 0.08, the phase er-
ror oscillates between the circular value and a value a few times
larger. There is no appreciable effect of eccentricity on the secular
growth of the phase error for these eccentricities, suggesting that
the effect of eccentricity on the error in the adiabatic evolution is
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• Target GW150914: 

• O1 Advanced LIGO noise curve with fmin = 30 Hz 

• Short NR waveforms sufficient 

• Label with eref from fit to PN ~7 cycles before the merger 

• Overlap: 

• Faithfulness:

Results: Faithfulness

8

FIG. 6. Agreement of the time-to-merger model with NR. The time be-
tween the reference point and the peak of |h

22

| is shown as a circle for
each NR simulation, and a cross for the fitted model from Eq. 9.

where we have used a Taylor expansion in q and e, and a Fourier
series in l, since l is a periodic variable. In order to match the NR
data, we find that we require quadratic terms in q and e, but only
the first mode in l. Since there can be no variation with l when
e = 0, we must have a

i01 = 0. We do not find it necessary to
include the product term a110qe cos(�↵

k

), so we omit it from the
model. This leaves us with a functional form

�t(q, e, l) = �t0 + a1e+ a2e
2
+ b1q + b2q

2
+

c1e cos(l + c2) (8)

There are 7 unknown parameters, and we fit to all 22 simulations.
The fitted function is

�t(q, e, l) = 267.428� 9.64022e� 1943.44e

2
+

3.58513q + 4.16137q

2
+

57.5287e cos(52.375 + l) (9)

Fig. 6 shows �t for each NR simulation, along with the value
obtained from the fit. We find a fit residual of less than ±1M ,
and the essential functional dependence of �t(q, e, l) has been
captured by the model. We conclude that we can predict the time
of the peak from the parameters at tref to within ±1M .

C. Combining all the ingredients

Given the eccentric parameters (x0, e0, l0,�0) at tref , we can
now construct a full IMR waveform. The eccentric PN waveform
is hPN(t), such that its parameters at t = tref match the desired
model parameters. The circular merger waveform is hcirc(t), such
that the peak occurs at t = 0. We denote the amplitude, A, and
frequency, !, of a waveform such that h = Ae

i� and ˙

� = !. The

IMR waveform is given by

tpeak = tref +�t (10)
tcirc = tpeak � 30M (11)

tblend = t|
x=xblend (12)

↵(t) = T (t; tblend, tcirc) (13)
A(t) = ↵(t)APN + (1� ↵(t))Acirc(t� tpeak) (14)
!(t) = ↵(t)!PN + (1� ↵(t))!circ(t� tpeak) (15)

�(t) =

Z
t

!(t

0
)dt

0 (16)

h(t) = A(t)e

i�(t) (17)

We choose the start of the blending region as xblend = 0.12, and
the reference point as xref = 0.11. In words, we time shift the
circular waveform so that its peak is in the correct place accord-
ing to the time-to-merger fit of Sec. VI B, and blend the amplitude
and frequency of the PN and circular waveforms using a transi-
tion function T (see Eq. 20) between tblend and tcirc to ensure a
smooth transition in these quantities. The phase is then computed
by integrating the frequency, leading to the final waveform.

This procedure is illustrated for Case 16 in Fig. 7, which shows
the amplitudes and frequencies from PN and the circular model,
as well as the transition region in which they are blended together.
The NR waveform is shown for comparison, but no information
from the NR waveform (other than the set of fit parameters at tref)
is used in computing the model waveform.

We see in Fig. 7 that the IMR waveform ! agrees with PN and
NR before tref, and with the CMM after tcirc. There is a visible
discrepancy between the IMR and NR frequency between tref and
tcirc, as expected, though this is small. The PN waveform breaks
down after tcirc. The IMR amplitude A has a visible disagreement
with the NR amplitude, presumably due to the fact that zeroth-
order PN (restricted) waveform amplitudes are used in the model.

VII. FOURIER DOMAIN COMPARISONS OF WAVEFORMS

In this section, we discuss the comparison of waveforms from
the point of view of gravitational wave data analysis, which re-
quires Fourier representations of the waveforms. We investigate
the effect of eccentricity on the procedure used to ensure that
Fourier transforms of time-domain truncated waveforms are re-
liable.

A. Faithfulness

The data from a gravitational wave detector is analysed by a
process of matched filtering against a set of template waveforms
in the frequency domain. In Sec. VIII E, we will determine how
well the eccentric IMR waveform model defined in Sec. VI agrees
with potential astrophysical sources. Given two waveforms h1(t)

and h2(t), their noise-weighted overlap is defined as [57]

(h1|h2) ⌘ 4Re
Z

fmax

fmin

˜

h1(f)
˜

h

⇤
2(f)

S

n

(f)

df , (18)

where ˜

h1,2(f) are the Fourier transforms of the waveforms and
S

n

(f) is the one-sided power spectral density (PSD) of the de-
tector noise. We examine two detector configurations: early Ad-
vanced LIGO, corresponding roughly to the sensitivity during the
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FIG. 7. Combining the different ingredients to produce the IMR wave-
form. The top panel shows the transition function ↵ which is used to
blend the amplitude, A, and frequency, !, between the eccentric PN and
circular NR waveforms. The middle and bottom panels show A and !

from the NR simulation, the PN model fitted to it at the reference point
tref, and the circular merger model (CMM) with peak tpeak determined
from the time-to-merger fit �T . Between tref and tpeak, the IMR model is
constructed by blending the PN and CMM quantities using ↵.

first observing run, with a low frequency cutoff fmin = 30 Hz, and
PSD from [? ], and design Advanced LIGO, with fmin = 10 Hz
and the zero-detuned-high-power PSD from [58].

The faithfulness is then defined as the overlap between the nor-
malized waveforms maximized over relative time and phase shifts

F = hh1|h2i = max

�c,tc

(h1(�c

, t

c

) | h2)p
(h1|h1)(h2|h2)

. (19)

The faithfulness measures how similar the waveforms would ap-
pear to a gravitational wave detector when the data is analysed
using matched filtering.

B. Fourier transforms of eccentric NR waveforms

Eq. 19 requires the Fourier transforms of the waveforms h1 and
h2, which will correspond to the IMR model waveform and the
“true” astrophysical waveform, which we take to be the NR wave-
form. Hence, we need to compute the Fourier transforms of these
waveforms.

To estimate the continuum Fourier transform, we use a discrete
Fourier transform (DFT) over the available NR time interval (see,
e.g. [59]). To minimise Gibbs’ phenomena due to time-domain
truncation, the waveform is tapered by multiplying it by a variant
of the Planck taper function [60],

T (t; t1, t2) =

8
>><

>>:

0 for t  t1h
exp

⇣
t2�t1
t�t1

+

t2�t1
t�t2

⌘
+ 1

i�1
for t1 < t < t2

1 for t � t2

(20)
at both the start and end of the waveform. Specifically,

h

`m

(t) ! h

`m

(t) (21)
⇥ T (t; trel, trel + 250M) (22)
⇥ (1� T (t; tpeak + 60M, tpeak + 80M)) . (23)

trel is the relaxed time, after which the effects of non-astrophysical
junk radiation in the waveform can be neglected (here chosen as
500M from the start of the waveform), and tpeak is the time of
the peak in |h22|, roughly corresponding to the merger. The wave-
form is also resampled to a time step of 0.4M and padded with
zeroes before computing the discrete Fourier transform to ensure
a sufficiently small time step in frequency space.

In the quasi-circular case, !22(t) ⇡ 2

˙

�, where !22(t) is the
frequency of the dominant instantaneous GW emission from the
binary, and ˙

� is the orbital angular velocity. ˙

� increases monoton-
ically on the radiation-reaction timescale. Intuitively, ˜h(!) con-
sists of contributions from times when ˙

� ⇡ !/2. The amplitude of
the Fourier transform is |˜h22| ⇠ (M!)

�7/6 to leading PN order;
i.e. it decreases with increasing ! because the binary spends more
time, and hence there is more total GW emission, at lower fre-
quency than at high frequency, and the increase in the amplitude
of emission per orbit at high frequency is not enough to dominate
over this effect.

A quasi-circular NR simulation starts with a given orbital an-
gular velocity ˙

�0, and contributions to ˜

h(!) for ! < 2

˙

�0, which
would be present in a real astrophysical waveform, are not present
in the NR waveform. In other words, ˜h(!) for the time-truncated
waveform is unphysical below a certain frequency, and its ampli-
tude is strongly suppressed for ! < 2

˙

�0. Hence, there is a peak
(!peak) in the Fourier transform of the truncated waveform. Typi-
cally, ˜h(!) is found to be relatively free of Gibbs’ phenomena and
agrees with longer waveforms for ! > 1.2!peak [61].

In the eccentric case, there is no longer a single frequency
emitted at a given time, and !22 ⇡ 2

˙

� oscillates on the orbital

timescale (see Eq. 2), so it is not clear that the minimum frequency
at which ˜

h(!) is reliable can be determined using the same crite-
rion in the eccentric case as in the circular case.

In order to assess the effect of time truncation, we have run
one simulation, Case 54, starting from a lower orbital frequency
than the others, giving XX cycles rather than the typical 20, and
⇠ 6000M of evolution time, rather than the typical 2500M .

Fig. 8 shows the amplitudes of the Fourier transforms of wave-
forms with eccentricities 0 and 0.1 (Cases 39 and 54). The ec-
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FIG. 7. Combining the different ingredients to produce the IMR wave-
form. The top panel shows the transition function ↵ which is used to
blend the amplitude, A, and frequency, !, between the eccentric PN and
circular NR waveforms. The middle and bottom panels show A and !

from the NR simulation, the PN model fitted to it at the reference point
tref, and the circular merger model (CMM) with peak tpeak determined
from the time-to-merger fit �T . Between tref and tpeak, the IMR model is
constructed by blending the PN and CMM quantities using ↵.

first observing run, with a low frequency cutoff fmin = 30 Hz, and
PSD from [? ], and design Advanced LIGO, with fmin = 10 Hz
and the zero-detuned-high-power PSD from [58].

The faithfulness is then defined as the overlap between the nor-
malized waveforms maximized over relative time and phase shifts

F = hh1|h2i = max

�c,tc

(h1(�c

, t

c

) | h2)p
(h1|h1)(h2|h2)

. (19)

The faithfulness measures how similar the waveforms would ap-
pear to a gravitational wave detector when the data is analysed
using matched filtering.

B. Fourier transforms of eccentric NR waveforms

Eq. 19 requires the Fourier transforms of the waveforms h1 and
h2, which will correspond to the IMR model waveform and the
“true” astrophysical waveform, which we take to be the NR wave-
form. Hence, we need to compute the Fourier transforms of these
waveforms.

To estimate the continuum Fourier transform, we use a discrete
Fourier transform (DFT) over the available NR time interval (see,
e.g. [59]). To minimise Gibbs’ phenomena due to time-domain
truncation, the waveform is tapered by multiplying it by a variant
of the Planck taper function [60],

T (t; t1, t2) =

8
>><

>>:

0 for t  t1h
exp

⇣
t2�t1
t�t1

+

t2�t1
t�t2

⌘
+ 1

i�1
for t1 < t < t2

1 for t � t2

(20)
at both the start and end of the waveform. Specifically,

h

`m

(t) ! h

`m

(t) (21)
⇥ T (t; trel, trel + 250M) (22)
⇥ (1� T (t; tpeak + 60M, tpeak + 80M)) . (23)

trel is the relaxed time, after which the effects of non-astrophysical
junk radiation in the waveform can be neglected (here chosen as
500M from the start of the waveform), and tpeak is the time of
the peak in |h22|, roughly corresponding to the merger. The wave-
form is also resampled to a time step of 0.4M and padded with
zeroes before computing the discrete Fourier transform to ensure
a sufficiently small time step in frequency space.

In the quasi-circular case, !22(t) ⇡ 2

˙

�, where !22(t) is the
frequency of the dominant instantaneous GW emission from the
binary, and ˙

� is the orbital angular velocity. ˙

� increases monoton-
ically on the radiation-reaction timescale. Intuitively, ˜h(!) con-
sists of contributions from times when ˙

� ⇡ !/2. The amplitude of
the Fourier transform is |˜h22| ⇠ (M!)

�7/6 to leading PN order;
i.e. it decreases with increasing ! because the binary spends more
time, and hence there is more total GW emission, at lower fre-
quency than at high frequency, and the increase in the amplitude
of emission per orbit at high frequency is not enough to dominate
over this effect.

A quasi-circular NR simulation starts with a given orbital an-
gular velocity ˙

�0, and contributions to ˜

h(!) for ! < 2

˙

�0, which
would be present in a real astrophysical waveform, are not present
in the NR waveform. In other words, ˜h(!) for the time-truncated
waveform is unphysical below a certain frequency, and its ampli-
tude is strongly suppressed for ! < 2

˙

�0. Hence, there is a peak
(!peak) in the Fourier transform of the truncated waveform. Typi-
cally, ˜h(!) is found to be relatively free of Gibbs’ phenomena and
agrees with longer waveforms for ! > 1.2!peak [61].

In the eccentric case, there is no longer a single frequency
emitted at a given time, and !22 ⇡ 2

˙

� oscillates on the orbital

timescale (see Eq. 2), so it is not clear that the minimum frequency
at which ˜

h(!) is reliable can be determined using the same crite-
rion in the eccentric case as in the circular case.

In order to assess the effect of time truncation, we have run
one simulation, Case 54, starting from a lower orbital frequency
than the others, giving XX cycles rather than the typical 20, and
⇠ 6000M of evolution time, rather than the typical 2500M .

Fig. 8 shows the amplitudes of the Fourier transforms of wave-
forms with eccentricities 0 and 0.1 (Cases 39 and 54). The ec-16



Results: Faithfulness

• Eccentric model faithful (97%) with NR for q ≤ 3: 

• For eref < 0.05, M > 70 M☉ 

• For eref < 0.08, M > 93 M☉ 

• Limits on M from: (i) length of NR, (ii) accumulated PN errors (from RR)
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Conclusions and outlook

• Eccentric inspiral-merger-ringdown BBH waveform model 

• See [Huerta et al. 2016] for a similar model, not calibrated to NR simulations 

• Non-spinning, q ≲ 3, eref < 0.1 

• Numerical Relativity for calibration and testing 

• < 3% unfaithfulness to NR for GW150914-like events 

• NR simulations and Mathematica code for model will be public 

• Future: 

• Implications for measurement of e with GW detectors 

• Longer NR waveforms 

• Spin
18


