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Overview

• Numerical Relativity 

• Physics, mathematics, numerics, computing, 
software 

• Gravitational waves 

• Waveform modelling and LIGO 

• Waveforms from eccentric binaries 

• Outlook



1. Numerical Relativity
Open source simulation of merger of 
GW150914 
[Wardell, IH, Bentivegna] 
einsteintoolkit.org/gallery/bbh

http://einsteintoolkit.org/gallery/bbh


Numerical Relativity: Physics

• How does matter and geometry evolve in 
time in General Relativity? 

• Some highlights: 

• Binary black hole and neutron star 
mergers: test GR and high density 
physics 

• Supernova core collapse 

• Gravitational wave templates for detectors 

• Cosmology: e.g. how does light 
propagate in an inhomogeneous 
spacetime? [Bentivegna, Korzynzki and 
IH, 2016] 

• Mathematical relativity (singularity 
theorems), etc Compact binary simulation in NR



Numerical Relativity: Maths

• 10 coupled nonlinear 2nd order partial differential 
equations: 
 
 
 
 
 
 
Formulate as initial boundary value problem by 
projecting onto a foliation of 3D t=const  
slices: 
 

• ~25 eqs/variables - complicated, nonunique, 
issues of well-posedness
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Chapter 2

3+1 decomposition of Einstein’s

equations

2.1 Motivation

Consider a spacetime (M, gab) where M is a four dimensional manifold and gab is the

spacetime metric on that manifold (see e.g. [35, 64] for an introduction to the theory of

general relativity). Einstein’s equations

Gab ≡ (4)Rab −
1

2
(4)Rgab = κ(4)Tab (2.1)

describe geometrically the behaviour of the curvature of a space-time and how this is related

to its matter content. Gab is the Einstein tensor associated with gab, (4)Rab is the Ricci

tensor, and (4)Tab is the stress energy tensor representing the energy and matter content of

the spacetime. The (4) indicates that the curvature tensors are those of the four dimensional

spacetime, as we will be considering three dimensional quantities later. This work will be

concerned with vacuum general relativity, hence the matter terms Tab will be neglected. In

this situation, (2.1) is equivalent to
(4)Rab = 0 (2.2)

Writing (2.2) in terms of partial derivatives associated with a coordinate basis, the structure

of the equations becomes apparent:

(4)Rµν ≡ 1

2
gσρ(gσν,µρ + gµρ,σν − gσρ,µν − gµν,σρ) + gσρ(Γm

µρΓmσν − Γm
µνΓmσρ) (2.3)
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2.2. Foliations of spacetime

Γµ
νσ ≡ 1

2
gµρ(gρν,σ + gρσ,ν − gjσ,ρ) (2.4)

Due to the symmetry of (4)Rij, this is a set of 10 equations. It forms a system of second

order partial differential equations for the metric components gab. This is not manifestly

an initial value problem. For an astrophysical simulation, initial data is provided at a time

t and the solution to the Einstein equations is required at later times.

2.2 Foliations of spacetime

Given a four dimensional spacetime (M, gab), the first step is to introduce a time coordinate.

This is a slight loss of generality, as only manifolds of the form R×Σ, or particular patches

of this form in a general manifold, can be described. It would have been possible to define

a global one-form ωa and this could have been used to generate a time function locally. We

will be satisfied with a concept of time which is local. This can be provided by a scalar

function t satisfying

gab∇at∇bt < 0 (2.5)

This is the requirement that surfaces of constant t (called slices) are spacelike. Each of these

surfaces is the image of a three dimensional manifold Σt under an embedding φt : Σt → M.

See Chapter 2 of [35] for more details. The set of surfaces Σt is called a foliation, and each

Σt is a spacelike hypersurface.

The lapse α describes the rate of change of proper time with coordinate time in a direction

normal to the slices:

−α−2 ≡ gab∇at∇bt (2.6)

2.3 Projections in and across the slices

The unit normal na to the slice is defined as

na ≡ −gabα∇bt (2.7)

This satisfies nana = −1, and for any vector in the slice (i.e. sa such that sa∇at = 0),

nasa = 0. Such vectors are described as spatial in the context of this decomposition. The

set of tensors which give zero when contracted with na are described as spatial, and these
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• Initial data (t=0) evolved forward 

in time with evolution 
equations 

• Also get constraint equations 
on each t=const slice



Einstein equations in 3+1 form

• Now expand components...
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In particular, gravitational wave measurements rely on com-
putations on constant coordinate spheres S2, parameterized by
local spherical-polar coordinates (⌅,⌥) with constant coordi-
nate radius r. In principle, it would be possible to construct
coordinates on these 2-dimensional spheres which correspond
to the underlying grid coordinates of the evolution, for in-
stance as portrayed in the lower figure of Fig. 1. In this case,
data can be mapped directly onto the spheres. More generally,
however, interpolation can be used to obtain data at points on
the measurement spheres, according to the procedure outlined
in Sec. II B, above.

For the purpose of analysis, it is often convenient to de-
compose the data on S2 in terms of (spin-weighted) spherical
harmonic modes,

A⌥m =
⌅

d⇤
⇤
�gA(⇤)sȲ⌥m(⇤) , (10)

where g is the determinant of the surface metric and ⇤ angular
coordinates. In standard spherical-polar coordinates (⌅,⌥),

⇤
�g = sin2 ⌅ . (11)

The integral, Eq. (10), is solved numerically as follows. In the
spherical polar case, we can take advantage of an highly accu-
rate Gauss quadrature scheme which is exact for polynomials
of order up to 2N � 1, where N is the number of gridpoints.
More specifically, we use Gauss-Chebyshev quadrature. The
scheme can be written out as

⌅
d⇤f(⇤) =

N�⇤

i

N⇥⇤

j

fijwj +O(N⇥) , (12)

where N⇥ and N⌅ are the number of angular gridpoints and
wj are weight functions [53, 54],

wj =
2⌃

N⌅

1
N⇥

⇤
2⌃

N�/2�1⇤

l=0

1
2l + 1

sin
�

[2l + 1]
⌃j

N

⇥
,

j = 0, ..., N⇥ � 1 . (13)

In our implementation, the weight functions are pre-calculated
for fast surface integration.

III. EVOLUTION SYSTEM

We evolve the spacetime using a variant of the “BSSNOK”
evolution system [55, 56, 57, 58] and a specific set of gauges
[59, 60], which have been shown to be effective at treating the
coordinate singularities of Bowen-York initial data.

The 4-geometry of a spacelike slice ⇥ (with timelike nor-
mal, n�) is determined by its intrinsic 3-metric, ⇤ab and ex-
trinsic curvature, Kab, as well as a scalar lapse function, �,
and shift vector, ⇥a which determine the coordinate propaga-
tion. The standard BSSNOK system defines modified vari-
ables by performing a conformal transformation on the 3-
metric,

⌥ :=
1
12

ln det ⇤ab, ⇤̃ab := e�4⌅⇤ab, (14)

subject to the constraint

det ⇤̃ab = 1, (15)

and by removing the trace of Kab,

K := trKij = gijKij , (16)

Ãij := e�4⌅(Kij �
1
3
⇤ijK), (17)

with the constraint

Ã := ⇤̃ijÃij = 0. (18)

Additionally, three new variables are introduced, defined in
terms of the Christoffel symbols of ⇤̃ab by

�̃a := ⇤̃ij�̃a
ij . (19)

In principle the �̃a can be determined from the ⇤̃ab, on a slice
however their introduction is key to establishing a strongly hy-
perbolic (and thus stable) evolution system. In practise, only
the constraint Eq. (18) is enforced during evolution [61], while
Eq. (15) and Eq. (19) are simply monitored as indicators of
numerical error. Thus, the traditional BSSNOK prescription
evolves the variables

⌥, ⇤̃ab, K, Ãab, �̃a, (20)

according to evolution equations which have been written
down a number of times (see [62, 63] reviews).

In the context of puncture evolutions, it has been noted that
alternative scalings of the conformal factor may exhibit better
numerical behaviour in the neighbourhood of the puncture as
compared with ⌥. In particular, a variable of the form

⌥̂⇤ := (det ⇤ab)�1/⇤, (21)

has been suggested [3, 64]. In [3], it is noted that certain sin-
gular terms in the evolution equations for Bowen-York initial
data can be corrected using � := ⌥̂3. Alternatively, [64] notes
that W := ⌥̂6 has the additional benefit of ensuring ⇤ remains
positive, a property which needs to be explicitly enforced with
�.

In terms of ⌥̂⇤, the BSSNOK evolution equations become:

↵t⌥̂⇤ =
2
⇧

⌥̂⇤�K + ⇥i↵i⌥̂⇤ �
2
⇧

⌥̂⇤↵i⇥
i, (22a)

↵t⇤̃ab =� 2�Ãab + ⇥i↵i⇤̃ab + 2⇤̃i(a↵b)⇥
i (22b)

� 2
3
⇤̃ab↵i⇥

i,

↵tK =�DiD
i� + �(AijA

ij +
1
3
K2) + ⇥i↵iK, (22c)

↵tÃab =(⌥̂⇤)⇤/3(�DaDb� + �Rab)TF + ⇥i↵iÃab (22d)

+ 2Ãi(a↵b)⇥
i � 2

3
Aab↵i⇥

i,

↵t�̃a =⇤̃ij↵i⇥j⇥
a +

1
3
⇤̃ai↵i↵j⇥

j � �̃i↵i⇥
a (22e)

+
2
3
�̃a↵i⇥

i � 2Ãai↵i�

+ 2�(�̃a
ijÃ

ij � ⇧

2
Ãai ↵i⌥̂⇤

⌥̂⇤

� 2
3
⇤̃ai↵iK),
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where Da is the covariant derivative determined by ⇤̃ab, and
“TF” indicates that the trace-free part of the bracketed term is
used.

We have implemented the traditional ⌃ form of the BSS-
NOK evolution equations, as well as the ⌥ and W variants
implicit in the evolution system, Eqs. (22). All three evolu-
tion systems produce stable evolutions of binary black holes,
though the ⌥ variant requires some special treatment if, due to
numerical error particularly in the neighbourhood of the punc-
tures, ⌃̂3 ⇤ 0 [65]. Generally we find that the advection of the
puncture (and thus the phase accuracy of the simulation) ex-
hibits lower numerical error when using the ⌥ and W variants
(see Appendix C). Convergence properties of physical vari-
ables (such as measured gravitational waves, or constraints
measured outside of the horizons), however, are not affected
by the choice of conformal variable.

The Einstein equations are completed by a set of four con-
straints which must be satisfied on each spacelike slice:

H ⇥ R(3) + K2 �KijK
ij = 0, (23a)

Ma ⇥ Di(Kai � ⇤aiK) = 0. (23b)

Again, we do not actively enforce these equations, but rather
monitor their magnitude in order to determine whether our
numerical solution is deviating from a solution to the Einstein
equations.

The gauge quantities, � and ⇥a, are evolved using the
prescriptions that have been commonly applied to BSSNOK
black hole, and particularly puncture, evolutions. For the
lapse, we evolve according to the “1 + log” condition [66],

�t�� ⇥i�i� = �2�K, (24)

while the shift is evolved using the hyperbolic “�̃-driver”
equation [59],

�t⇥
a � ⇥i�i⇥

a =
3
4
�Ba , (25a)

�tB
a � ⇥j�jB

i = �t�̃a � ⇥i�i�̃a � ⇧Ba , (25b)

where ⇧ is a parameter which acts as a (mass dependent)
damping coefficient, and is typically set to values on the or-
der of unity for the simulations carried out here. The advec-
tive terms in these equations were not present in the original
definitions of [59], where co-moving coordinates were used,
but have been added following the experience of more recent
studies using moving punctures [2, 60].

A. Wave extraction

The Newman-Penrose formalism [67] provides a conve-
nient representation for a number of radiation related quanti-
ties as spin-weighted scalars. In particular, the curvature com-
ponent

�4 ⇥ �C�⇥⇤⌅n
�m̄⇥n⇤m̄⌅, (26)

is defined as a particular component of the Weyl curvature,
C�⇥⇤⌅ , projected onto a given null frame, {l,n,m, m̄}.

The identification of the Weyl scalar �4 with the gravita-
tional radiation content of the spacetime is a result of the peel-
ing theorem [67, 68, 69], which states that in an appropriate
frame and for sufficiently smooth and asymptotically flat ini-
tial data near spatial infinity, the �4 component of the curva-
ture has the slowest fall-off with radius, O(1/r).

The most straight-forward way of evaluating �4 in numeri-
cal (Cauchy) simulations is to define an orthonormal basis in
the three space (r̂, ✓̂, �̂), centered on the Cartesian grid cen-
ter and oriented with poles along ẑ. The normal to the slice
defines a time-like vector t̂, from which we construct the null
frame

l =
1↵
2
(t̂� r̂), n =

1↵
2
(t̂ + r̂), m =

1↵
2
(✓̂ � i�̂) .

(27)
Note that in order to make the vectors {l,n,m, m̄} null,
(r̂, ✓̂, �̂) have to be orthonormal relative to the spacetime met-
ric. In practice, we fix r̂ and then apply a Gram-Schmidt or-
thonormalization procedure to determine ✓̂ and �̂) 3. It is then
possible to calculate �4 via a reformulation of (26) in terms
of the geometrical variables on the slice [71] via the electric
and magnetic parts of the Weyl tensor,

�4 = Cijm̄
im̄j , (28)

where

Cij ⇥ Eij � iBij = Rij �KKij + Ki
kKkj � i⌅i

kl�lKjk .
(29)

The remaining Weyl scalars can be similarly obtained and
read

�3 =
1↵
2
Cijm̄

iej
r , (30a)

�2 =
1
2
Cije

i
re

j
r , (30b)

�1 = � 1↵
2
Cijm

iej
r , (30c)

�0 = Cijm
imj , (30d)

where (ej
r) ⇥ r̂ is the unit radial vector.

In relating �4 to the gravitational radiation, one is limited
by the fact that the measurements have been taken at a finite
radius from the source. Local coordinate and frame effects
can complicate the interpretation of �4. These problems can
largely be alleviated by taking measurements at several radii
and performing polynomial extrapolations to r ⌅ ⇧. Pro-
cedures for doing so have been studied in [72, 73]. In [73]
we have shown that if a sufficiently large outermost extrap-
olation radius is used, the variation in this procedure is of
the order ⇥A = 0.03% and ⇥⌃ = 0.003 rad in amplitude

3 Alternative frame constructions have also been used, such as orthonormal-
ising relative to one of the angular basis vectors [70], or omitting the or-
thonormalisation altogether [4]. We have generally found these modifica-
tions do not lead to significantly different measurements
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where (ej
r) ⇥ r̂ is the unit radial vector.

In relating �4 to the gravitational radiation, one is limited
by the fact that the measurements have been taken at a finite
radius from the source. Local coordinate and frame effects
can complicate the interpretation of �4. These problems can
largely be alleviated by taking measurements at several radii
and performing polynomial extrapolations to r ⌅ ⇧. Pro-
cedures for doing so have been studied in [72, 73]. In [73]
we have shown that if a sufficiently large outermost extrap-
olation radius is used, the variation in this procedure is of
the order ⇥A = 0.03% and ⇥⌃ = 0.003 rad in amplitude

3 Alternative frame constructions have also been used, such as orthonormal-
ising relative to one of the angular basis vectors [70], or omitting the or-
thonormalisation altogether [4]. We have generally found these modifica-
tions do not lead to significantly different measurements

of the conformal 3-metric !̃ is unity "which is true analyti-
cally but may not hold numerically#. We call $ , K, !̃ i j , Ã i j ,
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"& t!L'#Ã i j"e!4$)!DiD j(#(Ri j*
TF
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where TF denotes the trace-free part of the expression in
brackets with respect to ! i j . Note that the right-hand side of
the evolution equation "17# for the trace-free variable Ã i j is
trace-free except for the term Ã ikÃk

j . This is no contradic-
tion since the condition that Ã i j remains trace-free is (& t
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where we will use the momentum constraint above to substi-
tute for the divergence of Ã i j. One subtlety in obtaining nu-
merically stable evolutions with the BSSN variables is pre-
cisely the question of how the constraints are used in the
evolution equations. Several choices are possible and have
been studied, see, e.g., )21*.
Note that in the preceding equations we are computing

Lie derivatives of tensor densities. If the weight of a tensor
density T is w, i.e., if T is a tensor times !w/2, then
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In the second line we see the formula for a vector density of
weight 2

3 , but since %̃ i is not really a tensor density but is
derived from Christoffel symbols we obtain extra terms in-
volving second derivatives of the shift "the first line in the
equation above#.
On the right-hand sides of the evolution equations for Ã i j

and K, Eqs. "17# and "18#, there occur covariant derivatives
of the lapse function, and the Ricci tensor of the nonconfor-
mal metric. Since
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with D̃i the covariant derivative associated with the confor-
mal metric. The conformal Ricci tensor can be written in
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jkÃ jk#6Ã i j& j$!

2
3!̃ i j& jK " .

"26#

In the second line we see the formula for a vector density of
weight 2

3 , but since %̃ i is not really a tensor density but is
derived from Christoffel symbols we obtain extra terms in-
volving second derivatives of the shift "the first line in the
equation above#.
On the right-hand sides of the evolution equations for Ã i j
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Numerical Relativity: Numerics

• Strong field: numerical where all else fails 

• State vector of solution on a 3D grid of points 

• Spatial derivatives: 

• High-order finite differencing; or 

• Spectral collocation 

• Adaptive mesh refinement in space and time 

• Formal stability 

• First order in time, second order in space; 
standard methods inapplicable.  Stability 
proved for certain formulations  
[Calabrese, IH and Husa, 2006]

SpEC code

Einstein Toolkit code



Numerical Relativity: Computing

• Simulations: 100 - 1000 cores, days/weeks/months 

• Challenges: 

• Parallel scalability (many variables per grid 
point) 

• Complicated communication patterns of AMR 

• Use of modern accelerator architectures:  

• GPUs: first BBH simulation [Blazewicz, IH et 
al, 2013] 

• Intel MIC systems (Intel "Knights Landing") – 
work in progress 

• Load imbalance: development of task-based 
scheduling

0
10

20

30
x

0

10

20

30y

0

10

20

30

z

Decomposition of a simple numerical domain across nodes



Numerical Relativity: Software

• Einstein Toolkit (einsteintoolkit.org): 
• Open-source collection of relativity codes [Löffler, ..., IH et al., 2012] 
• Based on Cactus, a software framework for HPC:  

portable, established, successful (Gordon Bell prize 2001) 
• Automated code generation from tensorial 

descriptions [Husa, IH and Lechner, 2004] 
• Production-level, regular releases tested on ~30 top-level HPC 

systems in US and Europe, code review, issue tracking, open mailing 
list 

• Funded by NSF grant #1550551 
• SPectral Einstein Code (SpEC) - black-holes.org 

• Simulating eXtreme Spacetimes (SXS) collaboration 
• Very accurate and efficient 
• Funded by Sherman Fairchild Foundation

http://einsteintoolkit.org
http://black-holes.org


2.	Gravitational waves
Gravitational wave strain from 
simulation of GW150914



Understanding gravitational wave signals

• GW detector measures strain in TT gauge 

• Matched filtering to measure signal in noisy data 

• Parameter estimation: 

•   

• Need accurate hλ: 

• Numerical Relativity: weeks or months per 
waveform, vs millions needed 

• Fast models: PN+NR-inspired 

• NR: (i) calibrate models, (ii) test systematic errors, 
(iii) model-independent direct parameter estimation 

• In progress: automated NR pipeline using the 
Einstein Toolkit (with Huerta and Haas from 
NCSA) - open science
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localize the source by a factor of 1/SNR better than this.
For long-lived sources, however, a single antenna synthesizes many antennas by observing the

source at di↵erent points along its orbit around the sun. The baseline for such observations is 2 AU,
so that, for a source emitting radiation at 1 kHz, the resolution is as good as �✓ = 10�6 rad, which
is smaller than an arcsecond.

For space-based detectors orbiting the sun, like LISA, the baseline is again 2 AU, but the
observing frequency is some five or six orders of magnitude lower, so the basic resolution is only of
order 1 radian. However, as we shall see later, some of the sources that a space-based detector will
observe have huge amplitude SNRs in the range of SNR ⇠ 103 – 104, which improves the resolution
to arcminute accuracies in the best cases.

2.4 Amplitude of gravitational waves – the quadrupole approximation

The Einstein equations are too di�cult to solve analytically in the generic case of a strongly gravi-
tating source to compute the luminosity and amplitude of gravitational waves from an astronomical
source. We will discuss numerical solutions later; the most powerful available analytic approach is
called the post-Newtonian approximation scheme. This approximation is suited to gravitationally-
bound systems, which constitute the majority of expected sources. In this scheme [79, 169], solu-
tions are expanded in the small parameter (v/c)2, where v is the typical dynamical speed inside the
system. Because of the virial theorem, the dimensionless Newtonian gravitational potential �/c2

is of the same order, so that the expansion scheme links orders in the expanded metric with those
in the expanded source terms. The lowest-order post-Newtonian approximation for the emitted
radiation is the quadrupole formula, and it depends only on the density (⇢) and velocity fields
of the Newtonian system. If we define the spatial tensor Qjk, the second moment of the mass
distribution, by the equation

Qjk =
Z

⇢xjxk d3x, (1)

then the amplitude of the emitted gravitational wave is, at lowest order, the three-tensor

hjk =
2
r

d2Qjk

dt2
. (2)

This is to be interpreted as a linearized gravitational wave in the distant almost-flat geometry far
from the source, in a coordinate system (gauge) called the Lorentz gauge.

2.4.1 Wave amplitudes and polarization in TT-gauge

A useful specialization of the Lorentz gauge is the TT-gauge, which is a comoving coordinate
system: free particles remain at constant coordinate locations, even as their proper separations
change. To get the TT-amplitude of a wave traveling outwards from its source, project the tensor
in Equation (2) perpendicular to its direction of travel and remove the trace of the projected
tensor. The result of doing this to a symmetric tensor is to produce, in the transverse plane, a
two-dimensional matrix with only two independent elements:

hab =
✓

h+ h⇥
h⇥ �h+

◆
. (3)

This is the definition of the wave amplitudes h+ and h⇥ that are illustrated in Figure 1. These
amplitudes are referred to as the coordinates chosen for that plane. If the coordinate unit basis
vectors in this plane are êx and êy, then we can define the basis tensors

e+ = êx ⌦ êx � êy ⌦ êy, (4)
e⇥ = êx ⌦ êy + êy ⌦ êx. (5)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2
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in this paper can be used to improve the existing analytical models. We stress that
none of the above analytical models were calibrated using the numerical waveforms
produced by the NRAR collaboration. However, the SEOBNRv1 model was calibrated
in [87] to two waveforms independently generated by the SXS collaboration and later
contributed to the NRAR collaboration, specifically Case 16 (S1+44+44) and Case
17 (S1�44�44) in table 1.

As described above, we restrict our analysis here to the ` = 2,m = 2 mode of the
gravitational waveforms. We measure the di↵erence between numerical and analytical
waveforms with the unfaithfulness [220]

F̄ ⌘ 1�max
tc,�c

hhNR, hARip
hhNR, hNRihhAR, hARi

(38)

and the ine↵ectualness [220]

Ē ⌘ 1� max
tc,�c,~�

hhNR, hARip
hhNR, hNRihhAR, hARi

, (39)

where we denote the time and phase of coalescence of hAR by tc and �c, and the binary
parameters of hAR by ~�. The dependence of hAR on tc, �c and ~� has been omitted for
brevity. We define the inner product between two waveforms through the following
integral in the frequency domain

hh1, h2i ⌘ 4Re

Z 1

0

h̃1(f)h̃⇤
2(f)

Sh(f)
df , (40)

where h̃1(f) and h̃2(f) are frequency-domain waveforms

h̃k(f) =

Z 1

�1
hk(t) e

�2⇡ift dt (k = 1, 2) (41)

and Sh(f) is the noise power spectral density of the detector. In this paper, we employ
the zero-detuned high-power advanced LIGO noise curve ZERO DET HIGH P [102]. The
unfaithfulness of analytical waveforms is the normalized inner product minimized
over tc and �c and it is related to the bias in measuring the binary parameters.
The ine↵ectualness is also minimized over ~� and quantifies the e�ciency in detecting
gravitational-wave signals. Although here we are mainly interested in understanding
whether the existing template families are e↵ectual in detecting the numerical
waveforms given in table 1, we also want to study the consistency of these models
against the numerical waveforms over the entire frequency range. This will tell
us what region future improvements should focus on. Thus, both unfaithfulness
and ine↵ectualness give us important, complementary information. Because it is
computationally expensive to minimize over ~� when using the time-domain EOB
models, all the plots in this section will show the unfaithfulness, and for only the few
cases for which the unfaithfulness is larger than 1%, we calculate the ine↵ectualness.

The definition of hh1, h2i given in (40) involves an integral over frequency from
0 to 1. In reality, since the noise power spectral density of the detector has a
sharp low-frequency cuto↵ due to seismic noise, it is safe to start the integral at
this cuto↵ frequency, which is 10 Hz for the ZERO DET HIGH P noise curve of the
advanced LIGO detector. However, for a reasonable range of the total mass M of

hĥ�, ĥdeti

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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The relativistic 2 body problem: Eccentric case

• Eccentric binary systems circularise as E and L are emitted [Peters 
1964] 

• LIGO: circular only 

• Dense stellar environments → non-negligible  
waveform eccentricity 

• Measure/bound eccentricity of GW events such 
as GW150914? 

• Eccentric waveform model: compare with GW data 

• Use Post-Newtonian approximation and Numerical Relativity



Post-Newtonian model

• Large separation: existing post-Newtonian approximation: 
 

!

• Breaks down when v ~ c 

• First comparison with NR [IH et al. 2010]: 

• Good agreement; depends on subtleties of PN model


r(t)
�(t)

�
= expansion in (v/c)



Numerical Relativity simulations

• ~20 new eccentric NR simulations 

• ~25 GW cycles with the SpEC 
code 

• Non-spinning 

• Initial eccentricity e ≤ 0.2 

• q = m1/m2 ≤ 3 

• Eccentricity did not bias GW150914 
parameter estimation 
[Pürrer, ..., IH et al 2016] 

• Eccentric binaries circularise just 
before the merger (extending [IH et 
al., 2008])

���������

e0 = 0.00 e0 = 0.05 e0 = 0.10 e0 = 0.15 e0 = 0.20

���������

e0 = 0.00 e0 = 0.05 e0 = 0.10 e0 = 0.15 e0 = 0.20

The numerical simulations and results in this work were
obtained with the same infrastructure used in our previous
BBH studies (see Ref. [30] for full details). We have
evolved the circular model at three different resolutions
(finest grid spacings ofM=38:7,M=51:6, andM=64:5). We
obtain approximately fourth order convergence in the total
energy and angular momentum radiated, consistent with
the designed fourth order accuracy.

III. RESULTS

In Figs. 1 and 2 we display the gravitational wave strains
and coordinate inspiral tracks for e ! 0:1 and e ! 0:3. It is
evident that the difference in initial eccentricity has a large
effect during the inspiral. Qualitatively, the case with larger
eccentricity exhibits a more rapid inspiral [23]. However,
at some point both systems enter a circular plunge, hinting
that circularization may have occurred. We find that the
simulations with e " 0:5 show plunge-type rather than
orbital-type behavior in the coordinate motion from the
very start. Note that the tracks shown in Fig. 2 represent the
coordinate positions of the individual BHs, and once a
common horizon forms, they are less meaningful.

We now consider the emitted radiation and focus on the
dominant ‘ ! 2, m ! 2 mode of the complex Newman-
Penrose (NP) quantity !4 ! A#t$ exp%&i’#t$'. To com-

pare the orbits, we apply a time shift to A and ’, so that
the maximum of A (i.e., the peak of the amplitude of the
gravitational wave) is at t=Mf ! 0 in each simulation. In
Fig. 3, we plot the shifted amplitudes and frequencies ! !
d’=dt extracted at r ! 70M. The cases displayed are those
with eccentricities e ! 0–0:5 in steps of 0.1 and e ! 0:8.

In Fig. 3, the oscillations and growth in ! at early times
(inspiral) can be in general terms understood from simple
Newtonian considerations. That is, ignoring radiation re-
action, the oscillations (i.e., amplitude and period) in! are
a direct consequence of the eccentricity and are not present
in the e ! 0 case. The period of these oscillations is the
period Pr of the extrema in the separation, and the ampli-
tude of the oscillations increases with e. The addition of
radiation reaction leads to an overall growth of!with time
due to the energy and angular momentum loss, and this is
clearly visible in the figure. The amplitude of the oscilla-
tions in ! should decrease with time, corresponding to a
reduction in eccentricity. However, over these time scales,
it is difficult to separate this effect from the secular in-
crease in !. Also consistent with the predictions in [23],
the higher eccentricity evolutions merge more quickly. We
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TABLE I. Initial data parameters: The runs are labeled by their
initial eccentricity e. The BHs have linear momenta )P1;2=M
and are separated by a coordinate distance D=M.

e D=M P1;2=M e D=M P1;2=M

0.00 12.000 0.0850 0.40 18.459 0.0498
0.05 12.832 0.0792 0.50 20.023 0.0429
0.10 13.645 0.0741 0.60 21.539 0.0361
0.15 14.456 0.0695 0.70 22.955 0.0292
0.20 15.264 0.0651 0.80 24.072 0.0214
0.30 16.870 0.0571 — — —
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Eccentric waveform model construction

• Inspiral: 

• Use existing eccentric 
post-Newtonian model 

• Merger: 

• Use existing circular model 
(justified from observed 
circularisation) 

• Here, we interpolate 
several equal-mass non-
spinning waveforms 

• Smoothly blend inspiral and 
merger
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Calibration

• Blending parameters from NR simulations 

• Most important: 

• Δt determining peak of waveform 

•  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FIG. 7. Combining the different ingredients to produce the IMR wave-
form. The top panel shows the transition function ↵ which is used to
blend the amplitude, A, and frequency, !, between the eccentric PN and
circular NR waveforms. The middle and bottom panels show A and !

from the NR simulation, the PN model fitted to it at the reference point
tref, and the circular merger model (CMM) with peak tpeak determined
from the time-to-merger fit �T . Between tref and tpeak, the IMR model is
constructed by blending the PN and CMM quantities using ↵.

first observing run, with a low frequency cutoff fmin = 30 Hz, and
PSD from [? ], and design Advanced LIGO, with fmin = 10 Hz
and the zero-detuned-high-power PSD from [58].

The faithfulness is then defined as the overlap between the nor-
malized waveforms maximized over relative time and phase shifts

F = hh1|h2i = max

�c,tc

(h1(�c

, t

c

) | h2)p
(h1|h1)(h2|h2)

. (19)

The faithfulness measures how similar the waveforms would ap-
pear to a gravitational wave detector when the data is analysed
using matched filtering.

B. Fourier transforms of eccentric NR waveforms

Eq. 19 requires the Fourier transforms of the waveforms h1 and
h2, which will correspond to the IMR model waveform and the
“true” astrophysical waveform, which we take to be the NR wave-
form. Hence, we need to compute the Fourier transforms of these
waveforms.

To estimate the continuum Fourier transform, we use a discrete
Fourier transform (DFT) over the available NR time interval (see,
e.g. [59]). To minimise Gibbs’ phenomena due to time-domain
truncation, the waveform is tapered by multiplying it by a variant
of the Planck taper function [60],

T (t; t1, t2) =

8
>><

>>:

0 for t  t1h
exp

⇣
t2�t1
t�t1

+

t2�t1
t�t2

⌘
+ 1

i�1
for t1 < t < t2

1 for t � t2

(20)
at both the start and end of the waveform. Specifically,

h

`m

(t) ! h

`m

(t) (21)
⇥ T (t; trel, trel + 250M) (22)
⇥ (1� T (t; tpeak + 60M, tpeak + 80M)) . (23)

trel is the relaxed time, after which the effects of non-astrophysical
junk radiation in the waveform can be neglected (here chosen as
500M from the start of the waveform), and tpeak is the time of
the peak in |h22|, roughly corresponding to the merger. The wave-
form is also resampled to a time step of 0.4M and padded with
zeroes before computing the discrete Fourier transform to ensure
a sufficiently small time step in frequency space.

In the quasi-circular case, !22(t) ⇡ 2

˙

�, where !22(t) is the
frequency of the dominant instantaneous GW emission from the
binary, and ˙

� is the orbital angular velocity. ˙

� increases monoton-
ically on the radiation-reaction timescale. Intuitively, ˜h(!) con-
sists of contributions from times when ˙

� ⇡ !/2. The amplitude of
the Fourier transform is |˜h22| ⇠ (M!)

�7/6 to leading PN order;
i.e. it decreases with increasing ! because the binary spends more
time, and hence there is more total GW emission, at lower fre-
quency than at high frequency, and the increase in the amplitude
of emission per orbit at high frequency is not enough to dominate
over this effect.

A quasi-circular NR simulation starts with a given orbital an-
gular velocity ˙

�0, and contributions to ˜

h(!) for ! < 2

˙

�0, which
would be present in a real astrophysical waveform, are not present
in the NR waveform. In other words, ˜h(!) for the time-truncated
waveform is unphysical below a certain frequency, and its ampli-
tude is strongly suppressed for ! < 2

˙

�0. Hence, there is a peak
(!peak) in the Fourier transform of the truncated waveform. Typi-
cally, ˜h(!) is found to be relatively free of Gibbs’ phenomena and
agrees with longer waveforms for ! > 1.2!peak [61].

In the eccentric case, there is no longer a single frequency
emitted at a given time, and !22 ⇡ 2

˙

� oscillates on the orbital

timescale (see Eq. 2), so it is not clear that the minimum frequency
at which ˜

h(!) is reliable can be determined using the same crite-
rion in the eccentric case as in the circular case.

In order to assess the effect of time truncation, we have run
one simulation, Case 54, starting from a lower orbital frequency
than the others, giving XX cycles rather than the typical 20, and
⇠ 6000M of evolution time, rather than the typical 2500M .

Fig. 8 shows the amplitudes of the Fourier transforms of wave-
forms with eccentricities 0 and 0.1 (Cases 39 and 54). The ec-

Δt

�t(q, e, l) = �t0 + a1e+ a2e
2
+ b1q + b2q

2
+ c1e cos(l + c2)



Results

• Now: for configuration like GW150914, 
model faithfulness with NR waveform > 
97% for systems with 

• Total mass > 93 Msun for e < 0.08 

• Total mass > 70 Msun for e < 0.05

• Future: 

• Include spin 

• Parameter estimation on GW data
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FIG. 7. Combining the different ingredients to produce the IMR wave-
form. The top panel shows the transition function ↵ which is used to
blend the amplitude, A, and frequency, !, between the eccentric PN and
circular NR waveforms. The middle and bottom panels show A and !

from the NR simulation, the PN model fitted to it at the reference point
tref, and the circular merger model (CMM) with peak tpeak determined
from the time-to-merger fit �T . Between tref and tpeak, the IMR model is
constructed by blending the PN and CMM quantities using ↵.

first observing run, with a low frequency cutoff fmin = 30 Hz, and
PSD from [? ], and design Advanced LIGO, with fmin = 10 Hz
and the zero-detuned-high-power PSD from [58].

The faithfulness is then defined as the overlap between the nor-
malized waveforms maximized over relative time and phase shifts

F = hh1|h2i = max

�c,tc

(h1(�c

, t

c

) | h2)p
(h1|h1)(h2|h2)

. (19)

The faithfulness measures how similar the waveforms would ap-
pear to a gravitational wave detector when the data is analysed
using matched filtering.

B. Fourier transforms of eccentric NR waveforms

Eq. 19 requires the Fourier transforms of the waveforms h1 and
h2, which will correspond to the IMR model waveform and the
“true” astrophysical waveform, which we take to be the NR wave-
form. Hence, we need to compute the Fourier transforms of these
waveforms.

To estimate the continuum Fourier transform, we use a discrete
Fourier transform (DFT) over the available NR time interval (see,
e.g. [59]). To minimise Gibbs’ phenomena due to time-domain
truncation, the waveform is tapered by multiplying it by a variant
of the Planck taper function [60],

T (t; t1, t2) =

8
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at both the start and end of the waveform. Specifically,
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(t) (21)
⇥ T (t; trel, trel + 250M) (22)
⇥ (1� T (t; tpeak + 60M, tpeak + 80M)) . (23)

trel is the relaxed time, after which the effects of non-astrophysical
junk radiation in the waveform can be neglected (here chosen as
500M from the start of the waveform), and tpeak is the time of
the peak in |h22|, roughly corresponding to the merger. The wave-
form is also resampled to a time step of 0.4M and padded with
zeroes before computing the discrete Fourier transform to ensure
a sufficiently small time step in frequency space.

In the quasi-circular case, !22(t) ⇡ 2

˙

�, where !22(t) is the
frequency of the dominant instantaneous GW emission from the
binary, and ˙

� is the orbital angular velocity. ˙

� increases monoton-
ically on the radiation-reaction timescale. Intuitively, ˜h(!) con-
sists of contributions from times when ˙

� ⇡ !/2. The amplitude of
the Fourier transform is |˜h22| ⇠ (M!)

�7/6 to leading PN order;
i.e. it decreases with increasing ! because the binary spends more
time, and hence there is more total GW emission, at lower fre-
quency than at high frequency, and the increase in the amplitude
of emission per orbit at high frequency is not enough to dominate
over this effect.

A quasi-circular NR simulation starts with a given orbital an-
gular velocity ˙

�0, and contributions to ˜

h(!) for ! < 2

˙

�0, which
would be present in a real astrophysical waveform, are not present
in the NR waveform. In other words, ˜h(!) for the time-truncated
waveform is unphysical below a certain frequency, and its ampli-
tude is strongly suppressed for ! < 2

˙

�0. Hence, there is a peak
(!peak) in the Fourier transform of the truncated waveform. Typi-
cally, ˜h(!) is found to be relatively free of Gibbs’ phenomena and
agrees with longer waveforms for ! > 1.2!peak [61].

In the eccentric case, there is no longer a single frequency
emitted at a given time, and !22 ⇡ 2

˙

� oscillates on the orbital

timescale (see Eq. 2), so it is not clear that the minimum frequency
at which ˜

h(!) is reliable can be determined using the same crite-
rion in the eccentric case as in the circular case.

In order to assess the effect of time truncation, we have run
one simulation, Case 54, starting from a lower orbital frequency
than the others, giving XX cycles rather than the typical 20, and
⇠ 6000M of evolution time, rather than the typical 2500M .

Fig. 8 shows the amplitudes of the Fourier transforms of wave-
forms with eccentricities 0 and 0.1 (Cases 39 and 54). The ec-
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Outlook

• NR is only solution to Einstein's 
equations in dynamical strong-field 

• LIGO parameter estimation critically 
dependent on NR waveforms 

• Soon: eccentricity will be measurable

• Some plans... 
• Eccentric models for LIGO and LISA with spin 
• Waveforms from high mass ratio and high spin systems 
• Fully understand numerical convergence of NR AMR simulations 
• Design new NR approximation methods for q ~ 100-1000 
• Mathematically-rigorous computation of GWs in NR simulations 
• Task-based parallelism and improved numerical methods for x10 (?) 

simulation performance


