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Too big for a lab? Simulation!

• Can’t experiment on black holes/
neutron stars


• Use computer simulations to see how 
they behave (assuming certain physics)

• Compare results with 
astrophysical 
observations


• Was our physics model 
right?  



Gravitational waves

• Dense, fast astrophysical systems can 
produce Gravitational Waves


• First observed in 2015


• Gravitational Wave detectors: Advanced 
LIGO/VIRGO


• Very weak signals; need to know what to 
look for!


• Need Numerical Relativity simulations to 
model the dynamics and predict the 
waves
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Inspiral and merger of black hole binary system

• Black holes orbiting around each 
other


• Lose potential energy by emission of 
Gravitational Waves


• Separation shrinks: black holes 
merge



Inspiral and merger of neutron star binary system

• Stars throw off matter as they merge to form a black hole


• Matter forms a disk in orbit
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Gravitational waves from a black hole binary
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• Gravitational wave strain


• hμν(t, r, θ, Φ)


• Detector measures at a 
fixed (r, θ, Φ) as a function 
of time:
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GW150914: Observation vs simulation

• September 2015: First direct 
detection of gravitational waves 
(LIGO)


• Excellent agreement between 
observed signal and Numerical 
Relativity simulations


• In general, require Numerical 
Relativity to infer properties 
(masses, spins, etc)
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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-2

Abbott et al. 2015



Numerical Relativity

• Direct solution of Einstein’s 
equations on supercomputers


• Major applications:


• Binary black holes and 
binary neutron stars


• Supernova core collapse


• Size: 100 - 1000 cores


• Simulation time: days/weeks/
months



Einstein’s Equations

Initial data (t = 0)

Solution at time t

Einstein’s 
equations

Gµ⌫ = 8⇡Tµ⌫



Einstein equations in time-evolution form
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In particular, gravitational wave measurements rely on com-
putations on constant coordinate spheres S2, parameterized by
local spherical-polar coordinates (⌅,⌥) with constant coordi-
nate radius r. In principle, it would be possible to construct
coordinates on these 2-dimensional spheres which correspond
to the underlying grid coordinates of the evolution, for in-
stance as portrayed in the lower figure of Fig. 1. In this case,
data can be mapped directly onto the spheres. More generally,
however, interpolation can be used to obtain data at points on
the measurement spheres, according to the procedure outlined
in Sec. II B, above.

For the purpose of analysis, it is often convenient to de-
compose the data on S2 in terms of (spin-weighted) spherical
harmonic modes,

A⌥m =
⌅

d⇤
⇤
�gA(⇤)sȲ⌥m(⇤) , (10)

where g is the determinant of the surface metric and ⇤ angular
coordinates. In standard spherical-polar coordinates (⌅,⌥),

⇤
�g = sin2 ⌅ . (11)

The integral, Eq. (10), is solved numerically as follows. In the
spherical polar case, we can take advantage of an highly accu-
rate Gauss quadrature scheme which is exact for polynomials
of order up to 2N � 1, where N is the number of gridpoints.
More specifically, we use Gauss-Chebyshev quadrature. The
scheme can be written out as

⌅
d⇤f(⇤) =

N�⇤

i

N⇥⇤

j

fijwj +O(N⇥) , (12)

where N⇥ and N⌅ are the number of angular gridpoints and
wj are weight functions [53, 54],

wj =
2⌃

N⌅

1
N⇥

⇤
2⌃

N�/2�1⇤

l=0

1
2l + 1

sin
�

[2l + 1]
⌃j

N

⇥
,

j = 0, ..., N⇥ � 1 . (13)

In our implementation, the weight functions are pre-calculated
for fast surface integration.

III. EVOLUTION SYSTEM

We evolve the spacetime using a variant of the “BSSNOK”
evolution system [55, 56, 57, 58] and a specific set of gauges
[59, 60], which have been shown to be effective at treating the
coordinate singularities of Bowen-York initial data.

The 4-geometry of a spacelike slice ⇥ (with timelike nor-
mal, n�) is determined by its intrinsic 3-metric, ⇤ab and ex-
trinsic curvature, Kab, as well as a scalar lapse function, �,
and shift vector, ⇥a which determine the coordinate propaga-
tion. The standard BSSNOK system defines modified vari-
ables by performing a conformal transformation on the 3-
metric,

⌥ :=
1
12

ln det ⇤ab, ⇤̃ab := e�4⌅⇤ab, (14)

subject to the constraint

det ⇤̃ab = 1, (15)

and by removing the trace of Kab,

K := trKij = gijKij , (16)

Ãij := e�4⌅(Kij �
1
3
⇤ijK), (17)

with the constraint

Ã := ⇤̃ijÃij = 0. (18)

Additionally, three new variables are introduced, defined in
terms of the Christoffel symbols of ⇤̃ab by

�̃a := ⇤̃ij�̃a
ij . (19)

In principle the �̃a can be determined from the ⇤̃ab, on a slice
however their introduction is key to establishing a strongly hy-
perbolic (and thus stable) evolution system. In practise, only
the constraint Eq. (18) is enforced during evolution [61], while
Eq. (15) and Eq. (19) are simply monitored as indicators of
numerical error. Thus, the traditional BSSNOK prescription
evolves the variables

⌥, ⇤̃ab, K, Ãab, �̃a, (20)

according to evolution equations which have been written
down a number of times (see [62, 63] reviews).

In the context of puncture evolutions, it has been noted that
alternative scalings of the conformal factor may exhibit better
numerical behaviour in the neighbourhood of the puncture as
compared with ⌥. In particular, a variable of the form

⌥̂⇤ := (det ⇤ab)�1/⇤, (21)

has been suggested [3, 64]. In [3], it is noted that certain sin-
gular terms in the evolution equations for Bowen-York initial
data can be corrected using � := ⌥̂3. Alternatively, [64] notes
that W := ⌥̂6 has the additional benefit of ensuring ⇤ remains
positive, a property which needs to be explicitly enforced with
�.

In terms of ⌥̂⇤, the BSSNOK evolution equations become:

↵t⌥̂⇤ =
2
⇧

⌥̂⇤�K + ⇥i↵i⌥̂⇤ �
2
⇧

⌥̂⇤↵i⇥
i, (22a)

↵t⇤̃ab =� 2�Ãab + ⇥i↵i⇤̃ab + 2⇤̃i(a↵b)⇥
i (22b)

� 2
3
⇤̃ab↵i⇥

i,

↵tK =�DiD
i� + �(AijA

ij +
1
3
K2) + ⇥i↵iK, (22c)

↵tÃab =(⌥̂⇤)⇤/3(�DaDb� + �Rab)TF + ⇥i↵iÃab (22d)

+ 2Ãi(a↵b)⇥
i � 2

3
Aab↵i⇥

i,

↵t�̃a =⇤̃ij↵i⇥j⇥
a +

1
3
⇤̃ai↵i↵j⇥

j � �̃i↵i⇥
a (22e)

+
2
3
�̃a↵i⇥

i � 2Ãai↵i�

+ 2�(�̃a
ijÃ

ij � ⇧

2
Ãai ↵i⌥̂⇤

⌥̂⇤

� 2
3
⇤̃ai↵iK),
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where Da is the covariant derivative determined by ⇤̃ab, and
“TF” indicates that the trace-free part of the bracketed term is
used.

We have implemented the traditional ⌃ form of the BSS-
NOK evolution equations, as well as the ⌥ and W variants
implicit in the evolution system, Eqs. (22). All three evolu-
tion systems produce stable evolutions of binary black holes,
though the ⌥ variant requires some special treatment if, due to
numerical error particularly in the neighbourhood of the punc-
tures, ⌃̂3 ⇤ 0 [65]. Generally we find that the advection of the
puncture (and thus the phase accuracy of the simulation) ex-
hibits lower numerical error when using the ⌥ and W variants
(see Appendix C). Convergence properties of physical vari-
ables (such as measured gravitational waves, or constraints
measured outside of the horizons), however, are not affected
by the choice of conformal variable.

The Einstein equations are completed by a set of four con-
straints which must be satisfied on each spacelike slice:

H ⇥ R(3) + K2 �KijK
ij = 0, (23a)

Ma ⇥ Di(Kai � ⇤aiK) = 0. (23b)

Again, we do not actively enforce these equations, but rather
monitor their magnitude in order to determine whether our
numerical solution is deviating from a solution to the Einstein
equations.

The gauge quantities, � and ⇥a, are evolved using the
prescriptions that have been commonly applied to BSSNOK
black hole, and particularly puncture, evolutions. For the
lapse, we evolve according to the “1 + log” condition [66],

�t�� ⇥i�i� = �2�K, (24)

while the shift is evolved using the hyperbolic “�̃-driver”
equation [59],

�t⇥
a � ⇥i�i⇥

a =
3
4
�Ba , (25a)

�tB
a � ⇥j�jB

i = �t�̃a � ⇥i�i�̃a � ⇧Ba , (25b)

where ⇧ is a parameter which acts as a (mass dependent)
damping coefficient, and is typically set to values on the or-
der of unity for the simulations carried out here. The advec-
tive terms in these equations were not present in the original
definitions of [59], where co-moving coordinates were used,
but have been added following the experience of more recent
studies using moving punctures [2, 60].

A. Wave extraction

The Newman-Penrose formalism [67] provides a conve-
nient representation for a number of radiation related quanti-
ties as spin-weighted scalars. In particular, the curvature com-
ponent

�4 ⇥ �C�⇥⇤⌅n
�m̄⇥n⇤m̄⌅, (26)

is defined as a particular component of the Weyl curvature,
C�⇥⇤⌅ , projected onto a given null frame, {l,n,m, m̄}.

The identification of the Weyl scalar �4 with the gravita-
tional radiation content of the spacetime is a result of the peel-
ing theorem [67, 68, 69], which states that in an appropriate
frame and for sufficiently smooth and asymptotically flat ini-
tial data near spatial infinity, the �4 component of the curva-
ture has the slowest fall-off with radius, O(1/r).

The most straight-forward way of evaluating �4 in numeri-
cal (Cauchy) simulations is to define an orthonormal basis in
the three space (r̂, ✓̂, �̂), centered on the Cartesian grid cen-
ter and oriented with poles along ẑ. The normal to the slice
defines a time-like vector t̂, from which we construct the null
frame

l =
1↵
2
(t̂� r̂), n =

1↵
2
(t̂ + r̂), m =

1↵
2
(✓̂ � i�̂) .

(27)
Note that in order to make the vectors {l,n,m, m̄} null,
(r̂, ✓̂, �̂) have to be orthonormal relative to the spacetime met-
ric. In practice, we fix r̂ and then apply a Gram-Schmidt or-
thonormalization procedure to determine ✓̂ and �̂) 3. It is then
possible to calculate �4 via a reformulation of (26) in terms
of the geometrical variables on the slice [71] via the electric
and magnetic parts of the Weyl tensor,

�4 = Cijm̄
im̄j , (28)

where

Cij ⇥ Eij � iBij = Rij �KKij + Ki
kKkj � i⌅i

kl�lKjk .
(29)

The remaining Weyl scalars can be similarly obtained and
read

�3 =
1↵
2
Cijm̄

iej
r , (30a)

�2 =
1
2
Cije

i
re

j
r , (30b)

�1 = � 1↵
2
Cijm

iej
r , (30c)

�0 = Cijm
imj , (30d)

where (ej
r) ⇥ r̂ is the unit radial vector.

In relating �4 to the gravitational radiation, one is limited
by the fact that the measurements have been taken at a finite
radius from the source. Local coordinate and frame effects
can complicate the interpretation of �4. These problems can
largely be alleviated by taking measurements at several radii
and performing polynomial extrapolations to r ⌅ ⇧. Pro-
cedures for doing so have been studied in [72, 73]. In [73]
we have shown that if a sufficiently large outermost extrap-
olation radius is used, the variation in this procedure is of
the order ⇥A = 0.03% and ⇥⌃ = 0.003 rad in amplitude

3 Alternative frame constructions have also been used, such as orthonormal-
ising relative to one of the angular basis vectors [70], or omitting the or-
thonormalisation altogether [4]. We have generally found these modifica-
tions do not lead to significantly different measurements
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"& t!L'#!̃ i j"!2(Ã i j , "15#

"& t!L'#$"!
1
6 (K , "16#
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TF

#("KÃi j!2Ã ikÃk
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"& t!L'#K"!DiDi(#(! Ã i jÃ i j#
1
3 K
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trace-free except for the term Ã ikÃk

j . This is no contradic-
tion since the condition that Ã i j remains trace-free is (& t
!L')(!̃ i jÃ i j)"0 and not !̃ i j(& t!L')Ã i j"0.
On the right-hand side of Eq. "18# we have used the

Hamiltonian constraint "3# to eliminate the Ricci scalar,
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The momentum constraint "4# becomes
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jkÃ jk!6Ã i j& j$#

2
3!̃ i j& jK . "20#

An evolution equation for %̃ i can be obtained from Eqs. "14#
and "15#,
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where we will use the momentum constraint above to substi-
tute for the divergence of Ã i j. One subtlety in obtaining nu-
merically stable evolutions with the BSSN variables is pre-
cisely the question of how the constraints are used in the
evolution equations. Several choices are possible and have
been studied, see, e.g., )21*.
Note that in the preceding equations we are computing

Lie derivatives of tensor densities. If the weight of a tensor
density T is w, i.e., if T is a tensor times !w/2, then
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where the first term denotes the tensor formula for Lie de-
rivatives with the derivative operator & and the second is the
additional contribution due to the density factor. The density
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In the second line we see the formula for a vector density of
weight 2

3 , but since %̃ i is not really a tensor density but is
derived from Christoffel symbols we obtain extra terms in-
volving second derivatives of the shift "the first line in the
equation above#.
On the right-hand sides of the evolution equations for Ã i j

and K, Eqs. "17# and "18#, there occur covariant derivatives
of the lapse function, and the Ricci tensor of the nonconfor-
mal metric. Since
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where %̃k
i j is the Christoffel symbol of the conformal metric,

we have, for example,
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The Ricci tensor can be separated in two parts:
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where R̃ i j is the Ricci tensor of the conformal metric and Ri j
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with D̃i the covariant derivative associated with the confor-
mal metric. The conformal Ricci tensor can be written in
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of the conformal 3-metric !̃ is unity "which is true analyti-
cally but may not hold numerically#. We call $ , K, !̃ i j , Ã i j ,
and %̃ i the BSSN variables.
In terms of the BSSN variables the evolution equation "1#

becomes
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where TF denotes the trace-free part of the expression in
brackets with respect to ! i j . Note that the right-hand side of
the evolution equation "17# for the trace-free variable Ã i j is
trace-free except for the term Ã ikÃk

j . This is no contradic-
tion since the condition that Ã i j remains trace-free is (& t
!L')(!̃ i jÃ i j)"0 and not !̃ i j(& t!L')Ã i j"0.
On the right-hand side of Eq. "18# we have used the

Hamiltonian constraint "3# to eliminate the Ricci scalar,
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An evolution equation for %̃ i can be obtained from Eqs. "14#
and "15#,
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i"!2"(& jÃ i j#Ã i j& j(#!& j"L '!̃ i j#, "21#

where we will use the momentum constraint above to substi-
tute for the divergence of Ã i j. One subtlety in obtaining nu-
merically stable evolutions with the BSSN variables is pre-
cisely the question of how the constraints are used in the
evolution equations. Several choices are possible and have
been studied, see, e.g., )21*.
Note that in the preceding equations we are computing

Lie derivatives of tensor densities. If the weight of a tensor
density T is w, i.e., if T is a tensor times !w/2, then
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where the first term denotes the tensor formula for Lie de-
rivatives with the derivative operator & and the second is the
additional contribution due to the density factor. The density

weight of +"e$ is 1
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3 and
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In the second line we see the formula for a vector density of
weight 2

3 , but since %̃ i is not really a tensor density but is
derived from Christoffel symbols we obtain extra terms in-
volving second derivatives of the shift "the first line in the
equation above#.
On the right-hand sides of the evolution equations for Ã i j

and K, Eqs. "17# and "18#, there occur covariant derivatives
of the lapse function, and the Ricci tensor of the nonconfor-
mal metric. Since
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where %̃k
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with D̃i the covariant derivative associated with the confor-
mal metric. The conformal Ricci tensor can be written in
terms of the conformal connection functions as
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of the conformal 3-metric !̃ is unity "which is true analyti-
cally but may not hold numerically#. We call $ , K, !̃ i j , Ã i j ,
and %̃ i the BSSN variables.
In terms of the BSSN variables the evolution equation "1#

becomes
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where TF denotes the trace-free part of the expression in
brackets with respect to ! i j . Note that the right-hand side of
the evolution equation "17# for the trace-free variable Ã i j is
trace-free except for the term Ã ikÃk

j . This is no contradic-
tion since the condition that Ã i j remains trace-free is (& t
!L')(!̃ i jÃ i j)"0 and not !̃ i j(& t!L')Ã i j"0.
On the right-hand side of Eq. "18# we have used the

Hamiltonian constraint "3# to eliminate the Ricci scalar,
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The momentum constraint "4# becomes
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An evolution equation for %̃ i can be obtained from Eqs. "14#
and "15#,
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i"!2"(& jÃ i j#Ã i j& j(#!& j"L '!̃ i j#, "21#

where we will use the momentum constraint above to substi-
tute for the divergence of Ã i j. One subtlety in obtaining nu-
merically stable evolutions with the BSSN variables is pre-
cisely the question of how the constraints are used in the
evolution equations. Several choices are possible and have
been studied, see, e.g., )21*.
Note that in the preceding equations we are computing

Lie derivatives of tensor densities. If the weight of a tensor
density T is w, i.e., if T is a tensor times !w/2, then
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where the first term denotes the tensor formula for Lie de-
rivatives with the derivative operator & and the second is the
additional contribution due to the density factor. The density
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3 and
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In the second line we see the formula for a vector density of
weight 2

3 , but since %̃ i is not really a tensor density but is
derived from Christoffel symbols we obtain extra terms in-
volving second derivatives of the shift "the first line in the
equation above#.
On the right-hand sides of the evolution equations for Ã i j

and K, Eqs. "17# and "18#, there occur covariant derivatives
of the lapse function, and the Ricci tensor of the nonconfor-
mal metric. Since
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with D̃i the covariant derivative associated with the confor-
mal metric. The conformal Ricci tensor can be written in
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• Tensor equations

• Use computer algebra to manipulate/optimise

• Automatically generate C code to solve them (15000 lines)



Why supercomputers?

11

• Need to store at least one 3D  
t = const grid of data in memory


• Too many points and too many 
variables to fit in a workstation
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• Supercomputer consists of many individual 

“nodes” connected by a fast 
“interconnect” network


• Split up the grid into blocks and run each 
on a separate node


• Parallel programming required!



Adaptive Mesh Refinement



The supercomputer in the basement:  
Minerva

• 38 TB of main memory


• 594 nodes (9504 cores)


• 302.4 TFLOPS (3 × 1014 
calculations per second)


• 58 Gb/sec communication 
network


• 500 TB of disk space


• Used for Numerical Relativity: 
binary black hole and neutron star 
simulations


