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Why do we need Numerical Relativity?

• GW150914 (loud): 

• detected from generic transient 
search: < 5 sigma 

• SEOBNRv2 search: > 5 sigma 

• GW151226 (quiet): required matched 
filtering against detailed realistic 
waveform models 

• Pure post-Newtonian waveform 
models: v/c << 1.  Terminate before 
merger 

• EOB model includes merger and 
ringdown; but how good is it?

• Suppose we had the exact waveform 
from GR: 

• Test models and improve 

• Numerical Relativity closest to exact GR 
spacetime for compact binary coalescence 

• EOBNR/Phenom waveform families 
based on NR 

• Used in LIGO searches and parameter 
estimation 

• Calibrated to and tested against NR 

• Numerical Relativity gives the final 
word
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What exactly is Numerical Relativity?

• Direct solution of the full nonlinear Einstein equations using numerical methods 
• Ideal case: 

• Solution plus error estimate.  Error can be made arbitrarily small. Price is 
computational cost. 

• Compare post-Newtonian (not in strong field), or perturbation theory (close to 
exact solutions) 

• Non-ideal case: 
• Continuum problem incomplete?  e.g. boundary conditions, initial data. 
• Compare experiment and simulation: 

• Experiment: random error and systematic error 
• Simulation: numerical error and continuum approximation error
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Overview

• Introduction 

• Numerical Relativity 

• Waveforms from Numerical Relativity 

• Recent results 

• Summary



1. Numerical Relativity
Image: Simulation of merger of 
GW150914, Weyl scalar ψ4 
- Barry Wardell, Einstein Toolkit
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Mathematical formulation

• 10 coupled nonlinear 2nd order partial 
differential equations: 
 
 

!

• Formulate as initial value problem by 
projecting onto a foliation of 3D t=const slices:

Rµ⌫ � 1

2
Rgµ⌫ = 8⇡Tµ⌫

@
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Chapter 2

3+1 decomposition of Einstein’s

equations

2.1 Motivation

Consider a spacetime (M, gab) where M is a four dimensional manifold and gab is the

spacetime metric on that manifold (see e.g. [35, 64] for an introduction to the theory of

general relativity). Einstein’s equations

Gab ≡ (4)Rab −
1

2
(4)Rgab = κ(4)Tab (2.1)

describe geometrically the behaviour of the curvature of a space-time and how this is related

to its matter content. Gab is the Einstein tensor associated with gab, (4)Rab is the Ricci

tensor, and (4)Tab is the stress energy tensor representing the energy and matter content of

the spacetime. The (4) indicates that the curvature tensors are those of the four dimensional

spacetime, as we will be considering three dimensional quantities later. This work will be

concerned with vacuum general relativity, hence the matter terms Tab will be neglected. In

this situation, (2.1) is equivalent to
(4)Rab = 0 (2.2)

Writing (2.2) in terms of partial derivatives associated with a coordinate basis, the structure

of the equations becomes apparent:

(4)Rµν ≡ 1

2
gσρ(gσν,µρ + gµρ,σν − gσρ,µν − gµν,σρ) + gσρ(Γm

µρΓmσν − Γm
µνΓmσρ) (2.3)

7

2.2. Foliations of spacetime

Γµ
νσ ≡ 1

2
gµρ(gρν,σ + gρσ,ν − gjσ,ρ) (2.4)

Due to the symmetry of (4)Rij, this is a set of 10 equations. It forms a system of second

order partial differential equations for the metric components gab. This is not manifestly

an initial value problem. For an astrophysical simulation, initial data is provided at a time

t and the solution to the Einstein equations is required at later times.

2.2 Foliations of spacetime

Given a four dimensional spacetime (M, gab), the first step is to introduce a time coordinate.

This is a slight loss of generality, as only manifolds of the form R×Σ, or particular patches

of this form in a general manifold, can be described. It would have been possible to define

a global one-form ωa and this could have been used to generate a time function locally. We

will be satisfied with a concept of time which is local. This can be provided by a scalar

function t satisfying

gab∇at∇bt < 0 (2.5)

This is the requirement that surfaces of constant t (called slices) are spacelike. Each of these

surfaces is the image of a three dimensional manifold Σt under an embedding φt : Σt → M.

See Chapter 2 of [35] for more details. The set of surfaces Σt is called a foliation, and each

Σt is a spacelike hypersurface.

The lapse α describes the rate of change of proper time with coordinate time in a direction

normal to the slices:

−α−2 ≡ gab∇at∇bt (2.6)

2.3 Projections in and across the slices

The unit normal na to the slice is defined as

na ≡ −gabα∇bt (2.7)

This satisfies nana = −1, and for any vector in the slice (i.e. sa such that sa∇at = 0),

nasa = 0. Such vectors are described as spatial in the context of this decomposition. The

set of tensors which give zero when contracted with na are described as spatial, and these

8
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7 • Initial data (t=0) evolved 
forward in time with 
evolution equations 

• Also get constraint 
equations on each t=const 
slice
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Milestones of Numerical Relativity - 
Pre-revolutionary

1959	 Arnowitt, Deser and Misner - ADM formalism: initial value problem for GR 

1964	 Hahn and Lindquist, also Smarr and Eppley: first numerical solution to the 
Einstein equations: attraction between two wormholes in axisymmetry; 

1980s	 Piran, Stark - gravitational waves in axisymmetry from formation of 
axisymmetric BH 

1980s	 Choptuik - Critical collapse with adaptive mesh refinement 

1990s	 Binary Black Hole Grand Challenge - Head-on BBH collision 

to 2005	 Development of coordinate conditions and excision techniques, wave 
extraction formalisms. 
 
Finite simulation lifetime, solutions unstable, much frustration
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Milestones of Numerical Relativity - 
The revolution begins

2005	 Pretorius is the first to successfully evolve more than one orbit of a BBH 
through merger and ringdown and compute the gravitational waveform

2

light are equal to 1):

gδγgαβ,γδ + gγδ
,βgαδ,γ + gγδ

,αgβδ,γ + 2H(α,β)

−2HδΓ
δ
αβ + 2Γγ

δβΓδ
γα = −8π (2Tαβ − gαβT )

−κ (nαCβ + nβCα − gαβnγCγ) . (1)

Hµ are (arbitrary) source functions encoding the gauge-
freedom of the solution, Γδ

αβ are the Christoffel symbols,
Tαβ is the matter stress tensor with trace T , κ is a pos-
itive constant multiplying the new constraint damping
terms following[13], nµ = 1/α(∂/∂t)µ − βi/α(∂/∂xi)µ is
the unit hypersurface normal vector with lapse function
α and shift vector βi (x0 ≡ t, xi ≡ [x1, x2, x3] ≡ [x, y, z]),
and Cµ are the constraints:

Cµ ≡ Hµ − gµν!xν . (2)

We use the following to evolve the source functions:

!Ht = −ξ1
α − 1

αη
+ ξ2Ht,νnν , Hi = 0 (3)

where ξ1 and η are positive constants. Note that (3) is
not the usual definition of spatial harmonic gauge, which
is defined in terms of contravarient components Hµ.

We use scalar field gravitational collapse to prepare ini-
tial data that will evolve towards a binary black hole sys-
tem. Specifically, at t = 0 we have two Lorentz boosted
scalar field profiles, and choose initial amplitude, sepa-
ration and boost parameters to approximate the kind of
orbit that the black holes (which form as the scalar field
collapses) will have. The procedure used to calculate the
initial geometry is based on standard techniques[14], and
is a straight forward extension of the method described
in[9] to include non-time-symmetric initial data. The ini-
tial spatial metric and its first time derivative is confor-
mally flat, and we specify a slice that is maximal and
harmonic. The Hamiltonian constraint is used to solve
for the conformal factor. The maximal conditions K = 0
and ∂tK = 0 (K is the trace of the extrinsic curvature)
give the initial time derivative of the conformal factor
and an elliptic equation for the lapse respectively. The
momentum constraints are used to solve for the initial
values of the shift vectors, and the harmonic conditions
Hµ = 0 are used to specify the initial first time deriva-
tives of the lapse and shift.

III. Results: In this section we describe results from the
evolution of one example of a scalar field constructed bi-
nary system. The present code requires significant com-
putational resources to evolve binary spacetimes[18], and
thus to study the orbital, plunge, and ringdown phases
of a binary system in a reasonable amount of simulation
time we chose initial data parameters such that the black
holes would merge within roughly one orbit—see Fig. 1
and Table I. The following evolution parameters in (1)
and (3) were chosen: κ ≈ 1.25/M0, ξ1 ≈ 19/M0, ξ2 ≈
2.5/M0, η = 5 (these parameters did not need to be
fine tuned), where M0 is the mass of one black in the

FIG. 1: A depiction of the orbit for the simulation described
in the text (see also Table I). The figure shows the coordinate
position of the center of one apparent horizon relative to the
other, in the orbital plane z = 0. The units have been scaled
to the mass M0 of a single black hole, and curves are shown
from simulations with three different resolutions. Overlaid on
this figure are reference ellipses of eccentricity 0, 0.1 and 0.2,
suggesting that if one were to attribute an initial eccentricity
to the orbit it could be in the range 0 − 0.2.

binary. This system was evolved using three different
grid hierarchies, which we label as “low”, “medium” and
“high” resolution. The low resolution simulation has a
base grid of 323, with up to 7 additional levels of 2 : 1
refinement (giving a resolution in the vicinity of the black
holes of ≈ M0/10). For computational efficiency we only
allowed regridding of level 6 and higher (at the expense
of not being able to accurately track out-going waves).
For the medium resolution simulation, we have one ad-
ditional level of refinement during the inspiral and early
phases of the merger, though have the same resolution
over the coarser levels and at late times; thus we are
able to resolve the initial orbital dynamics more accu-
rately with the medium compared to low resolution run,
though both have roughly the same accuracy in the wave
zone. The high resolution simulation has up to 10 lev-
els of refinement during the inspiral and early ringdown
phase, 9 levels subsequently, and the grid structure of the
lower levels is altered so that there is effectively twice the
resolution in the wave zone. The reason for this set of hi-
erarchies is again for computational efficiency: doubling
(quadrupling) the resolution throughout the low resolu-
tion hierarchy would have required 16 (256) times the
computer time, which in particular for the higher resolu-
tion simulation is impractical to do at this stage.

Fig. 2 shows the horizon masses and final horizon an-
gular momentum as a function of time. The ADM mass
of the space time suggests that approximately 15% of the
total scalar field energy does not collapse into black holes.
The remnant scalar field leaves the vicinity of the orbit
quite rapidly (in t ≈ 30M0, which is on the order of the
light crossing time of the orbit). Black hole masses are

4

FIG. 3: A sample of the gravitational waves emitted during
the merger, as estimated by the Newman-Penrose scalar Ψ4

(from the medium resolution simulation). Here, the real com-
ponent of Ψ4 multiplied by the coordinate distance r from the
center of the grid is shown at a fixed angular location, though
several distances r. The waveform has also been shifted in
time by amounts shown in the plot, so that the oscillations
overlap. If the waves are measured far enough from the cen-
tral black hole then the amplitudes should match, and they
should be shifted by the light travel time between the loca-
tions (i.e. by 25M0 in this example). That we need to shift the
waveforms by more than this suggests the extraction points
are still too close to the black hole; the decrease in amplitude
is primarily due to numerical error as the wave moves into
regions of the grid with relatively low resolution.

binary system, and so possibly in a region where (6) is
not strictly valid. However, the larger integration radii
are in regions of the grid that do not have very good
resolution (due both to the mesh refinement structure
and the spatially compactified coordinate domain), and
so numerical error (mostly dissipation) tends to reduce

the amplitude of the waves with distance from the source.
With all these caveats in mind, the numbers we obtain
from (6) are 4.7%, 3.2%, 2.7%, 2.3% at integration radii
of 25M0, 50M0, 75M0 and 100M0 respectively (from the
high resolution simulation[20]), and where the percent-
age is relative to 2M0. Another estimate of the radiated
energy can be obtained by taking the difference between
the final and initial horizon masses (Table I)—this sug-
gests around 5% (high resolution case).

V. Conclusion: In this letter we have described a nu-
merical method based on generalized harmonic coordi-
nates that can stably evolve (at least a class of) bi-
nary black hole spacetimes. As an example, we pre-
sented an evolution of a binary system composed of non-
spinning black holes of equal mass M0, with an initial
proper separation and orbital angular velocity of approx-
imately 16.6M0 and 0.023/M0 respectively. The binary
merged within approximately 1 orbit, leaving behind a
blackhole of mass Mf ≈ 1.9M0 and angular momentum
J ≈ 0.70M2

f . A calculation of the energy emitted in
gravitational waves indicates that roughly 5% of the ini-
tial mass (defined as 2M0) is radiated . Future work
includes improving the accuracy of simulation (in par-
ticular the gravitational waves), exploring a larger class
of initial conditions (binaries that are further separated,
have different initial masses, non-zero spins, etc.), and
attempting to extract more geometric information about
the nature of the merger event from the simulations.
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Milestones of Numerical Relativity -  
The Golden Age

2005	 Pretorius, long-term stable method for orbit using excision, finite difference methods 
and adaptive mesh refinement, generalised harmonic formulation  

2005	 Goddard and Brownsville groups: Moving puncture method (no excision): finite 
differences, BSSN formulation 

2006	 Buonanno, Cook and Pretorius: Detailed comparison with PN 

2007	 Campanelli, Lousto, Zlochower, Merritt, and Gonzalez, Hannam, Sperhake, Bruegmann, 
Husa - Unexpectedly high "super-kick" of merging BHs for certain spin orientations 

2008	 Inspiral waveform from the SpEC code (pseudo-spectral methods, dual coordinate 
frames, excision, generalised harmonic formulation) 

2009	 Inspiral-merger-ringdown simulation from the SpEC code 

2011	 Lovelace, Scheel, Szilagyi - Breaking the high spin limit (~0.93) of Bowen-York 
conformally flat initial data 

2015	 Waveform models built on NR results used in LIGO searches and parameter estimation 
for first GW detection
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Approaches to the BBH problem 1

• Initial data: 

• Elliptic constraint equations 

• Junk radiation 

• Formulations (BSSN, CCZ4, 
generalised harmonic): 

• 3+1 decomposition of the 
Einstein equations is not 
unique  

• Well-posedness

• Coordinate freedom of GR: 

• Well-behaved coordinates 

• Choose dynamically by evolving 
along with the spacetime 

• Physical black hole singularities? 

• Excision 

• Punctures
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Approaches to the BBH problem 2

• Numerical methods? Two main approaches: 

• Finite differences: spatial derivatives from subtracting  
neighbouring points. 
e.g. error = O(Δx8). 

• Spectral: expand solution in basis functions. Spatial 
derivatives of basis functions analytic. 
e.g. error = O(e-cN)
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Approaches to the BBH problem 3

• What type of numerical grid?  

• Regular Cartesian grid patches 

• Boxes of high resolution around the BHs - 
mesh refinement 

• Angular grids (r, th, ph) for the wave zone 

• Complex grid geometries adapted to the 
shape of the binary 

• Rotate the grid (dual frame method) with 
the binary to reduce errors
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NR codes

• Finite difference codes: 

• Cactus-based: Einstein Toolkit, Maya, LazEv, Illinois 

• SACRA 

• BAM 

• GRChombo:  

• Pseudospectral: 

• SpEC 

• + others (apologies)
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What can we do today?

• Stable evolutions of moderate BBH configurations: 

• Mass ratio q = m1/m2 < ~10 

• Spins chi = S/m2 < ~0.6 

• Number of orbits N < ~15 

• Main problem: different length scales 

• Different codes have different strengths: 

• SpEC: large numbers of orbits with high phase accuracy 

• Moving puncture finite difference: extremely robust
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How high can we go....

• ...in mass ratio? 

• q=100 for ~ 1 orbit 

• q=18 for 10 orbits 

• ...in number of orbits? 

• 175 orbits (q=7) 

• ...in spins? 

• S/m2 = 0.994 for 25 orbits, q=1 SXS public simulations catalogue
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Some conceptual issues

• Extrapolation of waves to Scri 

• Asymptotic frame / centre of mass 

• Spin direction



2.	Waveforms from 
Numerical Relativity

Image: Gravitational wave strain 
from simulation of GW150914
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What does a BBH waveform look like? 
1. Early inspiral

• post-Newtonian gives the 
waveform when v/c << 1 

• h = A(t) ei Φ(t) 

• Eventually blows up, as 
 
     v ~ r Φ'  
 
is no longer small close to 
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What does a BBH waveform look like? 
2. Post-merger

• After merger: perturbed Kerr BH 

• Linear perturbation theory predicts 
quasi-normal ringdown: 

• A ei (ωt - t/τ) where ω and τ 
depend on mass and spin 

• A (complex) is unknown; need NR 

• Final mass and spin as function 
of initial masses and spins is 
unknown: need NR
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What does a BBH waveform look like? 
3. Complete waveform

• Before 2005: Kip Thorne's sketch

holes with minimal eccentricity, as gravitating binary sys-
tems of comparable-mass objects are expected to circular-
ize rapidly through the emission of gravitational radiation.
We have selected an initial black-hole configuration with
the relatively low eccentricity of less than 1%, as measured
below.

Figure 1 shows the gravitational-wave strain generated
by our highest-resolution numerical run and that predicted
by the PN approximation with 3.5PN phasing [14,15] and
2.5PN (beyond leading order) amplitude accuracy [16].
The waves are based on the dominant l ! 2, m ! 2 spin-
weighted spherical harmonic of the radiation, and repre-
sent an observation made on the system’s equatorial plane,
where only one polarization component contributes to the
measured strain. The initial phase and time of the waves
have been adjusted so that the frequency and phase for each
waveform agree at a point, t ! "1000M, that is early in
the simulation, but after transient effects from the initial
data have subsided. We will quantify the phase agreement
below using the frequency domain, so that the time shift-
ing, done for illustrative purposes in Fig. 1, will have no
impact on the subsequent analysis.

To conduct comparisons with PN calculations, we need
to extract an instantaneous gauge-invariant polarization
phase ! and angular frequency ! from our simulations.
These are derived from the gravitational-wave strain’s first
time derivative, which is a robust quantity in the numerical
data. This frequency corresponds to the sweep rate of the
polarization angle of the circularly polarized gravitational
wave that can be observed on the system’s rotation axis.

We define eccentricity as a deviation from an underlying
smooth, secular trend. We obtain a monotonic ‘‘secular’’
frequency-time relation by modeling the waveform angular
frequency ! as a fourth-order monotonic polynomial

!c#t$, plus an eccentric modulation of the form d!#t$ !
!#t$ "!c#t$ ! A sin%!#t$&, where !#t$ is a quadratic
function of time. Fitting this equation to our data yields
A ! 8#'1$ ( 10"4M"1. For Keplerian systems, con-
served angular momentum is proportional to r2!, so the
eccentricity corresponds to half the fractional amplitude of
the frequency modulation: e ! A=#2!$. In our case the
eccentricity starts near 0.008, decreasing by a factor of 3 by
the time !cM) 0:15. We will compare our simulation
with noneccentric PN calculations, with the expectation
that small eccentricities have a minimal effect on the
important underlying secular trend in the rate at which
frequency sweeps up approaching merger.

The phasing of the waveform is critical for gravitational-
wave observation. For data analysis, the optimal methods
for both detection and parameter estimation rely on
matched filtering, which employs a weighted inner product
that can be expressed in Fourier space as hh; si !R
df%~h*#f$~s#f$ + ~h#f$~s*#f$&=Sn#f$, where h is the tem-

plate being used, s is the signal being analyzed, and Sn is
the one-sided power spectral density of the detector’s noise
[17]. A template that maximizes hh; si will provide an
optimal filter. Therefore, the most crucial factor is the
relative phasing of the template and signal. The inner
product will cease to accumulate in sweeping through
frequency if the template and the signal evolve to be out
of phase with each other by more than a half-cycle, de-
creasing the effectiveness of the procedure.

Our key objective is to compare phasing between nu-
merical and PN waveforms. We can make a stronger
connection to the underlying physics while avoiding issues
with time alignment by comparing phases as a function of
polarization frequency, which corresponds to twice the
orbital frequency in the PN case. For circular inspiral this
frequency should grow monotonically in time, with the
frequency !c providing a physical reference of the ‘‘hard-
ness’’ of the tightening binary.

Circular inspiral phasing information is typically de-
rived in PN theory by imposing an energy balance relation
to deduce the rate at which !c evolves from the radiation
rate at a specified value of !c [1]. Though not strictly
derived in the PN context, this physically sensible condi-
tion currently allows the determination of the chirp rate
_!c#!c$ up to 3.5PN order [11]. From such a relation,

information about phase and time are determined by inte-
grating d!=d!c ! !c= _!c and dt=d!c ! 1= _!c. The
phasing information can be represented by any one of
several relations among phase, frequency, and time.
Various approaches take the PN-expanded representation
of one of these relations as the PN ‘‘result’’ for waveform
phasing [1,11,18]. It has been demonstrated [11] that the
PN expansion of _!c#!c$, numerically integrated as
needed, has the greatest utility for conducting comparisons
of phasing with numerical results during the late inspiral,
and we adopt that convention.

For the purpose of comparison with our numerical simu-
lations, we invert the monotonic function !c#t$ to obtain
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FIG. 1 (color online). Gravitational strain waveforms from the
merger of equal-mass Schwarzschild black holes. The solid
curve is the waveform from the high-resolution numerical simu-
lation, and the dashed curve is a PN waveform with 3.5PN order
phasing [14,15] and 2.5PN order amplitude accuracy [16]. Time
t ! 0 is the moment of peak radiation amplitude in the simula-
tion.

PRL 99, 181101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
2 NOVEMBER 2007

181101-2

• After 2005: Numerical Relativity 
(e.g. Baker et al. 2007)
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and with NR?

• One configuration (D, m1/m2, S1, S2) at a time.   

• Simulations take from days to weeks to months, depending 
on number of orbits, m1/m2 and S 

• Scale-invariance of BBH 

• Need fast model for GW detection and parameter estimation 

• Use small (<1000) number of currently-known NR waveforms 
to (i) test and (ii) extend fast approximate waveform 
models.
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Waveform catalogues

• Collections of ~100s of waveforms from different BBH 
configurations 

• Configurations parametrised by 
q, 𝜒1, 𝜒2, ω0 (# orbits) 

• Multiple numerical resolutions



Ian Hinder	 	 Max Planck Institute for Gravitational Physics	 	 GRAMPA, Paris, 2016

Waveform catalogues

• SXS: black-holes.org/waveforms 

• 220 configurations 

• Described in arxiv:1605.03204 

• Georgia Tech: einstein.gatech.edu/catalog  

• 452 configurations 

• Described in arXiv:1304.6077 

• Other groups have internal private catalogues
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SXS catalogue parameter space
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• Axes of parameter space 
covered well 

• Corners not so well
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Comparisons with PN

• Post-Newtonian expansion valid when binary is far separated 

• NR very expensive for large separations 

• How late can we trust PN? 

• For LIGO, need waveform model for the system under consideration 
valid over the sensitive band 

• High mass: low frequency: early inspiral out of band.  For very high 
mass, only need NR. 

• Better PN models of the inspiral give you good models for lower 
masses. 

• Early PN+BBH comparisons: PN works surprisingly late
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Combining NR and PN

• NR too expensive for low mass systems 

• Waveform modelling: combining PN and NR to make a "complete" waveform 
model 

• Three main approaches: 

• Hybrid: blend early inspiral PN and NR late inspiral and merger 

• Phenomenological: PN for inspiral, functions with unkown coefficients for 
the merger; fit coefficients from NR simulations 

• Effective-One-Body: full inspiral-merger-ringdown model from ODEs 

• NR essential for all
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Hybrid waveforms

• Given an NR waveform for 
0 < t < tfinal, add a PN waveform for 
t < 0 

• Subtleties: 

• Blend the two in a region to avoid discontinuity 

• What PN parameters correspond to the NR t = 0?  Matching. 

• Hybrid waveform error will grow as t -> -Infinity 

• If all under control, get a waveform much longer than NR 

• Still only have one waveform

9
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FIG. 7: Real part of the time domain strain of corner cases, time coordinate is set to zero at the mid-frequency of the hybridization region,
which is shown in red.
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FIG. 8: Fourier domain amplitude of corner cases and ringdown frequency. In the left panel, the thick lines indicate the part of the NR
waveform that was used in the final hybrid, while data indicated by a thin line contained noise or other spurious artifacts, and was discarded.
The vertical lines indicate the peak of the amplitude, and the ringdown frequency fRD. In the right panel the f �7/6 leading-PN-order amplitude
has been scaled out to illustrate detailed features of the Fourier-domain amplitude through merger and ringdown.

For the RIT runs, two type of results are given, derived from
the isolated horizon formalism and from the radiation, and we
use the isolated horizon quantities due to the lower error bars
quoted. We do not use the mass-ratio 10 results from the RIT
data set, since the quoted result for the radiated energy dif-
fers from ours and the numerical fit by a factor of two and is
possibly a misprint.

A. Final spin

Before merger, the total angular momentum can be ex-
pressed in terms of the individual BH spins ~S i, which for our
purposes change only negligibly during inspiral, and the or-

Husa et al. 2015
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Effective-One-Body models

• See Stas' talk next

EOB
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A frequency-domain phenomenological waveform 
model: PhenomD

1. Collect a large number of NR waveforms 

2. Hybridise with SEOB, uncalibrated 

3. Split into three regions: inspiral, intermediate, merger-ringdown  

4. In each region, look at the waveforms for essential features in the 
frequency domain (where LIGO lives). 

5. Add phenomenological terms to the base model in each region with 
undetermined parameters 

6. Fit the parameters to the SEOBv2-NR hybrids (fit to a subset, check 
with the rest)
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PhenomD regions 8

FIG. 4: Phase derivative ��0
(f) ⌘ �@�(f)/@f (upper panel)

and amplitude (lower panel) for the q = 1, �1 = �2 = �0.95
configuration. The frequency ranges that were used in the
fits for each section are shown as black double-ended arrows.
For reference, the frequency Mf = 0.018 is marked with a
black dashed line. Shaded regions illustrate the boundaries
between the different regions when constructing the full IMR
waveform. The ringdown frequency for this case is Mf =

0.071.

waveform model. The construction of a suitable inspiral
model (Region I) is given in Sec. VI.

Our current construction requires that the starting fre-
quency of the Region II model must be consistent for all
waveforms. This imposes the constraint that the starting
frequency of the NR-based Region II model is the low-
est common GW frequency for which we have NR data,
Mf ⇠ 0.018. This is purely based on the available NR
data and could in principle be pushed towards lower fre-
quencies given longer waveforms.

B. Phase

To produce a robust model there are two key require-
ments: (1) the ansatz must fit the data well, i.e., the fits
have small residuals to the data, and (2) the choice of
ansatz should ideally be chosen to in such a way that the
coefficients vary smoothly across the parameter space, to
enable an accurate parameter-space fit in the final model.

We find that a simple approach is to split Region II
into an intermediate (Region IIa) and merger-ringdown
(Region IIb) part, and model them separately, as shown
in Fig. 4.

The detailed features of the phase through Region II
are most apparent when we consider the derivative of the
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FIG. 5: Phase derivative �0
(f) for the q = 1, �1 = �2 =

�0.95 configuration. The numerical data (dotted) show a
distinctive extremum at the ringdown frequency, MfRD =

0.071, indicated by a vertical dashed line. A fit that follows
an approach similar to that used for PhenomC (dashed) is
only a crude approximation to the phase for f > fRD, whereas
the approach used for the PhenomD model (solid) accurately
models the phase into the ringdown.

phase, @�/@f ⌘ �0(f). For this reason we first model �0,
and then integrate the resulting expression to produce
the final phase model. We also note that the overall 1/⌘
dependence in the inspiral, Eq. (27), also holds for the
merger and ringdown, and so all of our primary fits are
to ⌘�0.

1. Region IIb - merger-ringdown

An example of the derivative of the phase, �0 is shown
in Fig. 4 for a binary with q = 1, �

1

= �
2

= �0.95. As
described in Paper 1, we propose the following ansatz to
model this functional form,

�0
MR

= ↵
1

+ ↵
2

f�2 + ↵
3

f�1/4 +
a

b2 + (f � f
0

)2
. (12)

The last term models the ‘dip’ in Fig. 4. The location
of the minimum is given by f

0

, while a is the overall
amplitude of the dip and b is the width. We find that
the frequency location of the dip is very close to the final
BH’s ringdown frequency, f

RD

(they agree within our
uncertainty in calculating f

RD

), and that the ringdown
damping frequency f

damp

is a good approximation to our
best fit of the width. These quantities are calculated from
our final mass and spin fits. For these reasons the ansatz
that we use in practice is,

⌘ �0
MR

= ↵
1

+↵
2

f�2+↵
3

f�1/4+
↵
4

f
damp

f2

damp

+ (f � ↵
5

f
RD

)2
.

(13)
We find that the parameter ↵

5

is in the range
[0.98, 1.04]. The power law terms account for the overall
trend of the data, and its behaviour at lower frequen-
cies. The constant term translates into a time shift in
the overall phase, which will be determined by the conti-
nuity requirements of the final IMR phase; see Sec. VIII.
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PhenomD: Region I (PN, Inspiral)

• Mf < 0.018 

• PN stationary phase 
approximation 
(TaylorF2)  
+ 
4 higher order PN 
terms 
fitted to hybrids  
(SEOBv2 + NR)
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FIG. 8: Hybrid Fourier domain amplitude for three equal mass cases q = 1, �1 = �2 = 0.98, �1 = �2 = 0 and �1 = �2 = �0.95,
indicated by black, orange and green lines respectively. The PN prediction is shown as dashed lines. The left panel shows the
full fourier domain amplitude, while the right panel shows the fourier domain amplitude but rescaled by A�1

0 , Eq. (18).

amplitude, while the right panels show the amplitude
scaled by the f7/6 factor, Eq. 18.

The scaled plots indicate that the weakest part of the
model is that which describes the intermediate Region
IIa amplitude. This is because the minimum that we
see in the scaled figures (those in the right panels) is
captured only through the value of the amplitude at the
frequency in the middle of Region IIa. If we were in ad-
dition to model the frequency at which the minimum oc-
curs, and prescribe the amplitude value there, the model
may perform better. We could also, of course, add fur-
ther collocation points. However, we can see from the full
unscaled amplitude (the left panels) that the amplitude
is nonetheless very accurately represented, and in addi-
tion, small variations in the amplitude play a far smaller
role in GW applications (both searches and parameter
estimation) than the GW phase.

VI. INSPIRAL MODEL (REGION I)

We now turn our attention to modelling Region I, i.e.,
the inspiral portion of the waveform, below the frequency
Mf = 0.018; see Fig. 4.

The non-spinning [12] and the first aligned-spin [8] phe-
nomenological models used a PN-like ansatz for the in-
spiral phase, calibrated against PN+NR hybrids. In the
PhenomC model [14], the TaylorF2 phase was used for
the equivalent of Region I; in that model the inspiral re-
gion ended at 0.1f

RD

. For the parameter space covered
by our new model, this would corresponds to frequencies
between Mf ⇠ 0.005 and Mf ⇠ 0.012.

In Paper 1 we presented evidence that the uncalibrated
SEOBv2 model is currently the inspiral approximant that
is most consistent with NR data for the inspiral. In
this section we construct a frequency domain model of
the SEOBv2 inspiral, up to Mf = 0.018, using our
SEOBv2+NR hybrids. As discussed previously, we ex-

pect that the SEOBv2 model is sufficiently accurate up
to this frequency, and very likely to higher frequencies,
allowing us to match to our merger-ringdown model at
significantly higher frequencies than was considered rea-
sonable with the TaylorF2 approximant used for Phe-
nomC.

Note that it is possible, in principle, to cover the pa-
rameter space with an arbitrarily high density of SEOBv2
waveforms, and use those to calibrate an inspiral model.
In this paper, however, we use hybrid SEOBv2+NR
waveforms and therefore calibrate the inspiral model to
the same points in parameter space as used for the Re-
gion II merger-ringdown models.

A. Phase

The inspiral portion Mf 2 [0.0035, 0.018] of the hy-
brids can be accurately modelled with an ansatz con-
sisting of the known TaylorF2 terms for the phase, aug-
mented with the next four higher order PN terms, with
their coefficients fit to the SEOBv2+NR hybrid data. We
find that these higher order terms are enough to capture
the EOB and NR data over this frequency range to a very
high level of accuracy.

The full TaylorF2 phase is,

�
TF2

= 2⇡ft
c

� '
c

� ⇡/4

+
3

128 ⌘
(⇡fM)�5/3

7X

i=0

'
i

(⌅)(⇡fM)i/3,(27)

where '
i

(⌅) are the PN expansion coefficients that are
functions of the intrinsic binary parameters. Explicit
expressions are given in Appendix B. We incorporate
spin-independent corrections up to 3.5PN order (i = 7)
[50, 62], linear spin-orbit corrections up to 3.5PN order
[63] and quadratic spin corrections up to 2PN order [64–
66]. In re-expanding the PN energy and flux to obtain
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FIG. 9: Hybrid and model Fourier-domain amplitude for three equal-mass configurations, �1 = �2 = 0.98, �1 = �2 = 0

and �1 = �2 = �0.95, indicated by black, orange and green lines respectively. The hybrid data are shown by solid lines, and
the PhenomD model by dashed lines. The left panel shows the full Fourier-domain amplitude, while the right panel shows
the Fourier-domain amplitude but rescaled by A�1

0 , Eq. (18). The short vertical dashed lines mark the three frequency points
in Tab (II), while the lines at lower and higher frequency coincide with the transition points between regions I and IIa and
between regions IIa and IIb respectively.
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FIG. 10: The same quantities as in Fig. 9, but now for three q = 18 configurations, �1 = 0.4,�2 = 0, �1 = �2 = 0 and
�1 = �0.8,�2 = 0.

the TaylorF2 phase, we drop all quadratic and higher-
order spin corrections beyond 2PN order as they would
constitute incomplete terms in our description. With
these choices, we are entirely consistent with the current
state of the LIGO software library [58]. We note that we
also constructed a full model that incorporated recently
calculated higher-order terms, specifically quadratic spin
terms at 3PN order [67] and cubic spin terms at 3.5PN
order [68], but we found no significant difference between
both constructions.

Equation (27) includes both spins, �
1

and �
2

, while
our fit for the coefficients of additional terms will be pa-
rameterized only by �̂. This means that the final phase
expression will incorporate some effects from the spins
of each BH, but, although the model is sufficiently ac-
curate for use in GW astronomy applications across a
wide range of the two-spin parameter space, it should
not be considered an accurate representation of two-spin

effects. We expect the model to be more than sufficient
for searching for BH binaries with any BH spins within
the calibration parameter space, or for estimation of the
parameters (M, ⌘, �̂), but we do not recommend its use
in, for example, theoretical studies of detailed double-
spin effects in binaries.

The phase ansatz is given by,

�
Ins

=�
TF2

(Mf ;⌅)

+
1

⌘

✓
�
0

+ �
1

f +
3

4
�
2

f4/3 +
3

5
�
3

f5/3 +
1

2
�
4

f2

◆
.

(28)

Note that to compute the phenomenological coeffi-
cients the fit is performed over the frequency range
Mf 2 [0.0035, 0.019] to achieve an optimal balance be-
tween goodness of fit and accuracy in reproducing phe-
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PhenomD: Region IIa (NR, intermediate)

• Connect the phase between Region I and Region IIb via 
this form for the phase derivative: 

!

• Fit a 4th order polynomial for the amplitude

9

FIG. 6: Examples of the merger-ringdown (Region IIb)
model for three q = 18 configurations where the spin on the
large BH is �1 = {+0.4, 0,�0.8} and three equal-spin q = 1

configurations (�1,2 = +0.98, 0,�0.95). The configurations
are ordered top to bottom in the figure. The left panel shows
the hybrid data, best-fit and final-model predictions over Re-
gion IIb. The right panel shows the difference between the
hybrid data and the best-fit (dashed line) and between the
hybrid data and the final model (solid line).

The phase derivative data are fit to Eq. (13) over the
frequency range [0.45, 1.15] f

RD

. The upper frequency
1.15f

RD

approximates the highest frequency for which
we have clean NR data. This fitting window was cho-
sen to have some overlap between the intermediate phase
model, as indicated in Fig. 4.

The merger-ringdown phase is given by the integral of
Eq. (13),

�
MR

=
1

⌘

⇢
↵
0

+ ↵
1

f � ↵
2

f�1 +
4

3
↵
3

f3/4

+ ↵
4

tan�1

✓
f � ↵

5

f
RD

f
damp

◆�
.

(14)

For the full IMR phase we use the above fit for fre-
quencies larger than 0.5 f

RD

. At lower frequencies we
find that ⌘ �0 is fit better by ⇠ 1/f and we model this
region (IIa) separately.

The phase offset that appears as a constant of integra-
tion ↵

0

, and the time-shift term ↵
1

, will both be deter-
mined in the final model by requiring a smooth connec-
tion with the phase from Region IIa.

Examples of the results are shown in Fig. 6 for six
configurations at the edges of our calibration parameter
space. These are equal-spin q = 1 waveforms with spins
�̂ = {�0.95, 0, 0.98} and q = 18 waveforms with spins
on the larger BH of �

1

= {�0.8, 0, 0.4} (the second BH
has no spin). In addition to demonstrating that both the
ansatz and the final model capture the data well, the fig-
ure also illustrates the large differences in the frequency
range of the merger-rigndown at different points in the
parameter space.

FIG. 7: The same configurations and layout as in Fig. 6, but
now showing phase over the intermediate region (IIa).

2. Region IIa - intermediate

To bridge the gap between the lowest common fre-
quency of the NR data and the Region IIb merger-
ringdown model, i.e., over the frequency range Mf 2
[0.018, 0.5f

RD

], we use the following ansatz,

⌘ �0
Int

= �
1

+ �
2

f�1 + �
3

f�4 . (15)

The behaviour of the data over this frequency range
is predominately proportional to 1/f . This is not suffi-
cient at higher mass ratios and high anti-aligned spins,
where f

RD

can be approximately half that of the equal
mass non-spinning case. We find that the additional
f�4 term fits the data well across the entire parameter
space. The intermediate (Region IIa) ansatz is used over
the frequency interval [0.018, 0.5f

RD

], but we found that
the best results were obtained if the data were fit over
[0.017, 0.75f

RD

].
Once again the phase is obtained by integrating

Eq. (15),

�
Int

=
1

⌘

✓
�
0

+ �
1

f + �
2

Log(f)� �
3

3
f�3

◆
. (16)

As in Region IIb, the phase-shift due to the constant of
integration �

0

, and the time-shift term �
1

, will be fixed
by requiring a smooth connection to the Region I phase.
The results for the corner cases are shown in Fig. 7.

This completes the modelling of the phase over the
frequencies for which we have NR data, Region II. We will
now consider the signal amplitude over the same region,
before moving on to the inspiral, Region I.

C. Amplitude

When we perform the fits to the amplitude across Re-
gion I and Region II, we first factor out the leading order
PN f�7/6 behaviour. The resulting data tend to unity
as the frequency tends to zero, and as with the use of
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PhenomD: Region IIb (Merger-ringdown)

• In time domain, simple model for merger-ringdown might be 
exponentially-damped sine wave:  
 

• Fourier transform is Lorentzian: 
 

• However, has wrong high-f falloff (f-2 instead of exponential), so 
multiply Lorentzian by exponential:

10

the phase derivative, allows us to identify and model de-
tailed features of the amplitude behaviour; see Fig. 8,
which shows both amplitude for PN inspiral waveforms,
and for the full hybrids.

The normalisation is given by,

lim
f!0

h
f7/6 A

PN

(f)
i
!

r
2 ⌘

3⇡1/3

, (17)

and our normalisation factor is therefore,

A
0

⌘
r

2 ⌘

3⇡1/3

f�7/6. (18)

1. Region IIb - merger-ringdown

In all previous phenomenological models [8, 12, 14], the
ringdown amplitude has been modelled with a Lorentzian
function, which is the Fourier transform of the (two-
sided) exponential decay function. The Fourier trans-
form of the full IMR data instead exhibit an exponential
decay, as discussed in Paper 1. The amplitude in Region
IIb is fit over the frequency range Mf 2 [1/1.15, 1.2] f

RD

using the following ansatz,

A
MR

A
0

= �
1

�
3

f
damp

(f � f
RD

)2 + (�
3

f
damp

)2
e
� �

2

(f�fRD)

�
3

fdamp . (19)

The coefficient �
1

2 [0.0024, 0.0169] determines the over-
all amplitude of the ringdown. We expect that the fre-
quency width and location of the amplitude peak can be
inferred from the remnant BH parameters, which moti-
vates the appearance of the ringdown damping frequency
f
damp

in Eq. (19). In practice we find that the width is in-
creased by the factor �

3

2 [1.25, 1.36], and the decay rate
1/(f

damp

�
3

) is modified by the factor �
2

2 [0.54, 1.0339].
If we used only the Lorentzian part of Eq. (19), the

amplitude peak would be located at f
RD

. With the ad-
ditional exponential factor, the peak is located at

f
peak

=

������
f
RD

+
f
damp

�
3

⇣p
1� �2

2

� 1
⌘

�
2

������
. (20)

2. Region IIa - intermediate

We now consider the intermediate region (IIa) between
the end of the inspiral region (I) and the start of the
merger-ringdown region (IIb).

Fig. 8 shows the TaylorF2 inspiral amplitude in com-
parison to the amplitude in the hybrid data. In some
cases, we see that we can model the intermediate (Region
IIa) amplitude by simply smoothly connecting regions I
and IIb. For example, we could fit the four coefficients
of a third-order polynomial by matching the value of the
amplitude and its derivative at the end of the Region I

Collocation Point (Mf) Value Derivative
f1 = 0.014 v1 = AIns(f1) d1 = A0

Ins(f1)

f2 = (f1 + f3)/2 v2 = AHyb(f2)

f3 = fpeak v3 = AMR(f3) d3 = A0
MR(f3)

TABLE II: Locations of the collocation points, f1, f2, f3, and
the corresponding values of the amplitude A(f) and its deriva-
tive A0

(f). All information comes from either the inspiral or
merger-ringodwn models, except for the value v2, which is
read off the input waveform data.

(nominally Mf = 0.018) and at the beginning of Region
IIb, f

peak

.
In other cases, however, we see that the rescaled ampli-

tude will have a minimum in the intermediate region, and
a naive connection of the inspiral and merger-ringdown
regions would not in general locate this minimum cor-
rectly.

For this reason, we model the intermediate amplitude
with a fourth-order polynomial. Four of the coefficients
are fixed (as above), by matching the value and derivative
of the amplitude at the endpoints of our intermediate
fit. The lower frequency is chosen as Mf

1

= 0.014, i.e.,
slightly before the end of the inspiral at Mf = 0.018, and
the upper frequency is f

3

= f
peak

. The fifth coefficient is
determined by the value of amplitude of the NR waveform
at the frequency mid-way between the two, f

2

= (f
1

+
f
3

)/2.
In practice, the amplitude values and derivatives at

the endpoints are given by the models for Region I and
Region IIB. The only additional piece of information that
needs to be modelled from the NR data is the value of
the amplitude at f

2

. We find that this can be accurately
modelled across the parameter space by a polynomial
ansatz in (⌘, �̂), as will be described in Sec. VII.

This collocation method is similar to that used in spec-
tral methods. Given an ansatz with n free coefficients we
require n pieces of information from the data to constrain
the ansatz and solve the system. In this case we use the
value of the function at three points, and the derivative
at two points. The intermediate ansatz is given by

A
Int

= A
0

�
�
0

+ �
1

f + �
2

f2 + �
3

f3 + �
4

f4

�
, (21)

and the �
i

coefficients are the solution to the system of
equations,

A
Int

(f
1

) = v
1

, (22)
A

Int

(f
2

) = v
2

, (23)
A

Int

(f
3

) = v
3

, (24)
A0

Int

(f
1

) = d
1

, (25)
A0

Int

(f
3

) = d
3

. (26)

The frequencies and values are given in Tab. II.
The results of our amplitude model are shown in Figs. 9

and 10, which show the same equal-mass and q = 18
cases as in Fig. 6. The left panels show the full signal
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As can be seen in Fig. 10, the e↵ective spin Ŝ works reason-
ably well for the radiated energy. We model the dependence
on the spin Ŝ through a simple rational function, where the
numerator and denominator are linear in spin and quadratic
in symmetric mass ratio, with some experimentation having
gone into making a choice for which the nonlinear fitting pro-
cedure converges well, and the result has no singularities due
to vanishing denominator. The result of the fit, with a RMS
error of 4 ⇥ 10�4 is,

Erad

Mini
= ENS

rad(⌘)
1 + Ŝ

⇣
�0.00303023 � 2.00661⌘ + 7.70506⌘2

⌘

1 + Ŝ
��0.67144 � 1.47569⌘ + 7.30468⌘2�

(3.8)

FIG. 11: Radiated energy according to fit Eq. 3.8 plotted as a function
of symmetric mass ratio and total spin Ŝ . Black dots mark data points
with equal spins, grey dots unequal spins.

IV. WAVEFORM ANATOMY AND MODEL

A. Waveform anatomy

1. Amplitude

The waveform anatomy in the time domain has been stud-
ied extensively, and combined with EOB resummation tech-
niques of PN results has given rise to the family of EOB-
NR waveform models [6, 16–20]. One may distinguish
three phases without sharp boundaries: (i) a long inspiral
with slowly increasing amplitude, where the amplitude scales
as M⌘!2/3 in the low frequency limit, and the coalescence
time as !�8/3/⌘, (ii) an “extended-merger” characterised by a
rapid increase in amplitude and frequency; (iii) followed by a
damped sinusoidal ringdown. The Fourier transformation to
obtain the frequency domain waveform can in general not be
carried out analytically. In the low-frequency regime however,
the stationary phase approximation (SPA) can be used to an-
alytically obtain an approximate Fourier transform, which is
used in particular to obtain the TaylorF2 PN approximant as a
closed-form expression. Following the procedure outlined for

example in Section 3 of Ref. [27] we obtain the SPA ampli-
tude using the TaylorT4 form of the energy balance equation.
The Fourier domain amplitude, Ã22, is then given in terms of
the time domain amplitude A22 and second phase derivative
�̈ evaluated at the Fourier variable t f = (2⇡ f /m)2/3, where
m = 2 for the dominant harmonic we consider,

Ã22( f ) = A22(t f )

s
2⇡

m�̈(t f )
. (4.1)

In particular, to leading order the Fourier amplitude is,

|h̃22| = A0 f �7/6(1 + O( f 2/3)), A0 =

r
2 ⌘

3 ⇡1/3 . (4.2)

In order to better emphasize the non-trivial features of the
amplitude, we rescale our numerical data sets by the factor
f 7/6/A0, to normalize all amplitudes to unity at zero frequency
as shown in Fig. 8. We see a structure that is su�ciently
rich that a single analytical expression for the entire frequency
range is di�cult to achieve in terms of elementary (and thus
computationally cheap) functions. Our strategy will thus split
our description into an inspiral part, which models the wave-
form as higher order corrections to PN expressions, a merger-
ringdown part which builds upon the knowledge of the final
state, and an intermediate part which describes the frequency
regime which can not be based directly upon PN or the final
state.

Regarding the merger-ringdown, a crude time domain
model, which can be Fourier-transformed analytically, is a
sine-Exponential, which is symmetric around the peak am-
plitude:

h(t) = e2⇡(i fRDt� fdamp |t|) fRD, fdamp 2 R. (4.3)

The Fourier transform (2.4) yields a Lorentzian,

h̃(!) = �1
⇡

fdamp

( f � fRD)2 + f 2
damp

, (4.4)

which only falls o↵ as f �2 at large frequencies as expected
from Eq. (2.8), due to the fact that the original time domain
waveform h(t) is only C0 at the peak. Despite its oversim-
plification, in particular the unphysical symmetry around the
peak, and the incorrectly slow fallo↵ at high frequency, the
Lorentzian has provided a valid model for frequencies higher
than the ringdown frequency in PhenomA/B/C models. Look-
ing at Fig. 8, the expected roughly exponential drop at high
frequencies are clearly visible.

A natural extension of the Lorentzian ansatz used in the pre-
vious Phenom models, is to model the merger-ringdown am-
plitude AMR by multiplying the Lorentzian by an exponential
as

AMR

A0
= �1

(�3 fdamp)
( f � fRD)2 + ( fdamp�3)2 e��( f� fRD) . (4.5)

In order to find best fit parameters, we use Mathematica’s
NonlinearModelFit function. To achieve robust conver-
gence of the nonlinear least squares fit, we redefine

� = (�2/( fdamp�3)),
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PhenomD: Combining the regions

• Models are C1 (first derivative continuous) across region boundaries 

• Regions combined with a simple step function 

• Unknown parameters fitted against a subset of the SEOBv2+NR hybrids 

• Fit parameters depend on physical parameters (q, S1, S2) 

• Single effective spin approximation 

• Model quality tested against remaining hybrids 

• Ready to use in LALSimulation (open source) 

• Used for LIGO parameter estimation results
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How good is the PhenomD model?

• Excellent agreement 
with NR

23

q = 1, �1 = �2 = 0.98

q = 1, �1 = �2 = �0.95

q = 8, �1 = �2 = 0.85

q = 8, �1 = �2 = �0.85

q = 18, �1 = 0.4, �2 = 0.

q = 18, �1 = �0.8, �2 = 0.

FIG. 20: Time-domain PhenomD waveforms (solid, light blue online) and NR waveforms (dashed, red online) for corners of the
parameter space used for calibration. We plot the plus polarization h+ normalized by the extraction radius, and the binary’s
parameters are indicated by the mass ratio q = m1/m2 and the two spin parameters �1,�2.
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(1, 0.98, 0.98)
(1, -0.95, -0.95)
(6, 0., 0.)
(8, 0.85, 0.85)
(8, -0.85, -0.85)
(18, 0.4, 0.)
(18, -0.4, 0.)
(18, -0.8, 0.)

FIG. 15: Mismatches of the PhenomD model against all 48 available hybrid waveforms. The highlighted configurations are
those closest to the edge of the (⌘, �̂) parameter space as well as the case with the worst mismatch (q,�1,�2) = (6, 0., 0). The
majority of cases show mismatches well below 1%. Left: Mismatches using the aLIGO design sensitivity noise curve (zdethp)
with a lower frequency cut off of 10 Hz. Right: Early aLIGO noise curve with a 30 Hz cut off.

FIG. 16: Mismatch between a q = 8, �1 = 0.8, �2 = 0

SEOBv2+NR hybrid, and the PhenomD model. We see that
the mismatch exceeds our 1% threshold everywhere. How-
ever, the fitting factor is everywhere better than 0.9995, with
negligible parameter biases (see text).

a double-spin model. A further study, which provides
much stronger evidence for this claim, will be published
in the near future [35]. In practice the measurable intrin-
sic parameters of the binary will be (M, ⌘, �̂), and these
are the parameters of our model.

C. Calibration Set of waveforms

The construction of previous phenomenological mod-
els [8, 12–14] suggested that the parameter dependence
of the coefficients in our models depend sufficiently
smoothly across the parameter space that each coeffi-
cient can be presented by a low-order polynomial in each
parameter, and therefore we require only 4-5 waveforms
for each direction in parameter space. This expectation
is borne out in the current model, where we use four val-
ues of the mass ratio (1, 4, 8 and 18) and four or five
values of the spin at each mass ratio.

In this section we consider versions of the model con-
structed with more (or less) calibration waveforms. We
find that our small set of 19 calibration waveforms is

just as accurate as a model that is calibrated against a
much larger set of 48 waveforms. To quantify this test we
compute the maximum mismatch of four distinct models
against all hybrid waveforms used in this paper, i.e., the
48 waveforms in Tabs. I and III.

Fig 17 indicates four choices of parameter-space cov-
erage. The first set is the largest, and includes all 48
configurations indicated in the figure. The second set in-
cludes 25 waveforms, but only at mass ratios 1, 4 8 and
18, and does not include all available spin values at mass
ratios 1 and 8. The third set consists of the 19 waveforms
that we use for our final model. The fourth set is more
sparsely sampled in spins, with only three spin values at
each mass ratio, and only 12 waveforms in total.

Four models were constructed, each using the same
prescription, except for the Set-4 model, for which we
used a lower-order fit in the �̂ direction, since in general
we cannot expect to fit four coefficients with only three
spin values.

The results are summarized in Tab. IV. We calculate
the mismatch between each of the models and all 48 hy-
brids, over the same mass range used in Sec. IX A using
the early aLIGO noise curve with a 30 Hz cut off. For
each hybrid we calculate the largest mismatch in that
mass range. The table indicates the number of configu-
rations for which we find mismatches larger than 0.1%,
1% and 3% for each model. As we have already seen
in Fig. 15, the fiducial Set-3 model has mismatches of
less than 1% for all configurations. We find that in-
creasing the number of calibration waveforms does not
significantly improve the model’s performance.

We also see that if we further reduce the number of
calibration waveforms, as in the Set-4 model, then the
accuracy of the model drops significantly. For this model
there are now three configuration with mismatches worse
than 1%, and one configuration with a mismatch worse
than 7%. We therefore conclude that, in the sense of
the simple comparison that has been performed here, the
Set-3 model represents the optimal choice of calibration
waveforms.



3. Recent NR work
Image: The BSSN formulation of 
the Einstein equations
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In particular, gravitational wave measurements rely on com-
putations on constant coordinate spheres S2, parameterized by
local spherical-polar coordinates (✓,�) with constant coordi-
nate radius r. In principle, it would be possible to construct
coordinates on these 2-dimensional spheres which correspond
to the underlying grid coordinates of the evolution, for in-
stance as portrayed in the lower figure of Fig. 1. In this case,
data can be mapped directly onto the spheres. More generally,
however, interpolation can be used to obtain data at points on
the measurement spheres, according to the procedure outlined
in Sec. II B, above.

For the purpose of analysis, it is often convenient to de-
compose the data on S2 in terms of (spin-weighted) spherical
harmonic modes,

A
`m

=

Z
d⌦

p
�gA(⌦)

s

¯Y
`m

(⌦) , (10)

where g is the determinant of the surface metric and ⌦ angular
coordinates. In standard spherical-polar coordinates (✓,�),

p
�g = sin

2 ✓ . (11)

The integral, Eq. (10), is solved numerically as follows. In the
spherical polar case, we can take advantage of an highly accu-
rate Gauss quadrature scheme which is exact for polynomials
of order up to 2N � 1, where N is the number of gridpoints.
More specifically, we use Gauss-Chebyshev quadrature. The
scheme can be written out as

Z
d⌦f(⌦) =

N✓X

i

N�X

j

f
ij

w
j

+O(N
✓

) , (12)

where N
✓

and N
�

are the number of angular gridpoints and
w

j

are weight functions [53, 54],

w
j

=

2⇡

N
�

1

N
✓

p
2⇡

N✓/2�1X

l=0

1

2l + 1

sin

✓
[2l + 1]

⇡j

N

◆
,

j = 0, ..., N
✓

� 1 . (13)

In our implementation, the weight functions are pre-calculated
for fast surface integration.

III. EVOLUTION SYSTEM

We evolve the spacetime using a variant of the “BSSNOK”
evolution system [55, 56, 57, 58] and a specific set of gauges
[59, 60], which have been shown to be effective at treating the
coordinate singularities of Bowen-York initial data.

The 4-geometry of a spacelike slice ⌃ (with timelike nor-
mal, n↵) is determined by its intrinsic 3-metric, �

ab

and ex-
trinsic curvature, K

ab

, as well as a scalar lapse function, ↵,
and shift vector, �a which determine the coordinate propaga-
tion. The standard BSSNOK system defines modified vari-
ables by performing a conformal transformation on the 3-
metric,

� :=

1

12

ln det �
ab

, �̃
ab

:= e�4��
ab

, (14)

subject to the constraint

det �̃
ab

= 1, (15)

and by removing the trace of K
ab

,

K := trK
ij

= gijK
ij

, (16)

˜A
ij

:= e�4�

(K
ij

� 1

3

�
ij

K), (17)

with the constraint
˜A := �̃ij

˜A
ij

= 0. (18)

Additionally, three new variables are introduced, defined in
terms of the Christoffel symbols of �̃

ab

by
˜

�

a

:= �̃ij

˜

�

a

ij

. (19)

In principle the ˜

�

a can be determined from the �̃
ab

, on a slice
however their introduction is key to establishing a strongly hy-
perbolic (and thus stable) evolution system. In practise, only
the constraint Eq. (18) is enforced during evolution [61], while
Eq. (15) and Eq. (19) are simply monitored as indicators of
numerical error. Thus, the traditional BSSNOK prescription
evolves the variables

�, �̃
ab

, K, ˜A
ab

, ˜

�

a, (20)

according to evolution equations which have been written
down a number of times (see [62, 63] reviews).

In the context of puncture evolutions, it has been noted that
alternative scalings of the conformal factor may exhibit better
numerical behaviour in the neighbourhood of the puncture as
compared with �. In particular, a variable of the form

ˆ�


:= (det �
ab

)

�1/, (21)

has been suggested [3, 64]. In [3], it is noted that certain sin-
gular terms in the evolution equations for Bowen-York initial
data can be corrected using � :=

ˆ�3. Alternatively, [64] notes
that W :=

ˆ�6 has the additional benefit of ensuring � remains
positive, a property which needs to be explicitly enforced with
�.

In terms of ˆ�


, the BSSNOK evolution equations become:
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Waveform systematics

• How good are the approximate waveform models in the region of GW150914? 

• Always an error; will bias the parameters measured by LIGO 

• How big is the bias?  Larger than the LIGO noise error bars? 

• Michael Pürrer talk at APS in April: 

• Use an NR waveform as injected LIGO data and measure parameters of this 
waveform using approximate waveform models. 

• Do you recover the true parameters of the NR waveform within the noise error 
bars? 

• Summary: nothing to worry about so far
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Directly comparing
• GW150914 is high mass: 6 orbits in the LIGO band 

• Many NR waveforms available which are entirely 
in-band at this mass 

• Compare the LIGO data with all available NR 
waveforms 

• Interpolate the likelihood between available points 
in parameter space 

• Similar results to PE from approximate waveform 
models 

• See LIGO and Virgo collaborations, Abbott et al., 
Directly comparing GW150914 with numerical 
solutions of Einstein's equations for binary black 
hole coalescence, http://arxiv.org/abs/arXiv:
1606.01262
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- NR grid Aligned fit Overall LI NR grid (l  3) Aligned fit (l  3) Overall (l  3)
Detector-frame initial total mass Mz(M�) 65.6–77.7 67.2 – 77.2 65–77.7 66–75 67.1–76.8 67.2.3–77.3 67.1–77.3
Detector-frame m1,z(M�) 35–45 35–45 35–45 35–45 34.5–43.9 35–45 34.5–45
Detector-frame m2,z(M�) 27–36 27–36.7 27–36.7 27–36 30–37.5 28–37 28–37.5
Mass ratio 1/q 0.66–1 0.62–1 0.62–1 0.62–0.98 0.67–1 0.69–1 0.67–1
E↵ective spin �e↵ -0.3 – 0.2 -0.2 – 0.1 -0.3–0.2 �0.24–0.09 -0.24 – 0.1 -0.2–0.1 -0.24–0.1
Spin 1 a1 0–0.8 0.03–0.80 0–0.8 0.0–0.8 0–0.8 0.03–0.83 0–0.83
Spin 2 a2 0–0.8 0.07–0.91 0–0.91 0.0–0.9 0–0.8 0.11– 0.92 0–0.92
Final total mass Mf ,z(M�) 64.0–73.5 - 64.0– 73.5 63–71 64.2–72.9 64.2–72.9
Final spin af 0.62–0.73 0.62– 0.73 0.60–0.72 0.62–0.73 0.62–0.73

TABLE I. Constraints on Mz, q, �e↵ : Constraints on selected parameters of GW150914 derived by directly comparing the data to numerical
relativity simulations. The first column reports the extreme values of each parameter consistent with lnLmarg > 268.6 [Eq. (6), with d = 4],
corresponding to the black points shown in Figures 4, 7, and 10. These are computed using all the l = 2 modes of the NR waveforms.
Because these extreme values are evaluated only on a sparse discrete grid of NR simulations, this procedure can underestimate the extent of
the allowed range of each parameter. The second column reports the 90% credible interval derived by fitting lnLmarg versus these parameters
for nonprecessing binaries, to enable interpolation between points on the discrete grid in �; see Section IV B for details. The third column
is the union of the two intervals. For comparison, the fourth column provides the interval reported in LVC-PE[1], including precession and
systematics. The remaining three columns show our results derived using all l  3 modes.

���

���

���

���

���

��� ��� ��� ��� ��� ���
����

���	

���

��	

���

�
�

� �
��

���

���

���

���

���

FIG. 4. Mass, mass ratio, and e↵ective spin are constrained and correlated: Colors represent the marginalized log likelihood as a function
of redshifted total mass Mz, mass ratio q and e↵ective spin parameter �e↵ . Each point represents an NR simulation and a particular Mz. Points
with 265.8 < lnLmarg < 268.6 are shown in light gray, with lnLmarg > 268.6 are shown in black, and with lnLmarg < 265.8 are shown
according to the color scale on the right (points with lnLmarg < 172 have been suppressed to increase contrast). Marginalized likelihoods are
computed using flow = 30 Hz, using all l = 2 modes, and without correcting for (small) Monte Carlo integral uncertainties. These figures
include both nonprecessing and precessing simulations. For comparison, the black, blue, and green contours show estimated 90% credible
intervals, calculated assuming that the binary’s spins and orbital angular momentum are parallel. The solid black contour corresponds to the
90% credible interval reported in LVC-PE[1], assuming spin-orbit alignment; the solid blue contour shows the corresponding 90% interval
reported using the semianalytic precessing model (IMRP) in LVC-PE[1]; the solid green curve shows the 90% credible intervals derived using a
quadratic fit to lnLmarg for nonprecessing simulations using l = 2 modes; and the dashed green curve shows the 90% credible intervals derived
using lnLmarg from nonprecessing simulations, calculated using all modes with l  3; see Section IV B for details. Unlike our calculations, the
black and blue contours from LVC-PE[1] account for calibration uncertainty and use a low frequency cuto↵ of 20 Hz. Left panel: Comparison
for Mz, �e↵ . This figure demonstrates the strong correlation between the total redshifted mass and spin. Right panel: Comparison for q, �e↵ .
This figure is consistent with the similar but simpler analysis reported in LVC-Burst[4]; see, e.g., their Fig. 12.

merger quasinormal ringdown [97]. More extreme mass ratio
extends the duration of the pre-merger phase while dramati-
cally diminishing the amplitude and frequency of post-merger
oscillations [67, 68, 98, 99]. As noted above, the data tightly
constrain one of these combinations (e.g., the total redshifted

mass at fixed simulation parameters). Hence, our ability to
constrain any individual parameter Mz, q, or �e↵ is limited not
by the accuracy to which Mz is determined for each simulation
(i.e., the width 1/

p
�MM), but rather by di↵erences between

simulations (i.e., trends in ln L versus �e↵ , q) which break the
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FIG. 5. Distributions agree [nonprecessing case]: Comparison between the posterior distributions reported in LVC-PE[1] for nonprecessing
binaries (solid) and the posterior distributions implied by a leading-order approximation to lnLmarg [Eq. (9)] derived using l  2 (dotted) and
l  3 (dashed). Left panel: m1,z (black) and m2,z (red). Center panel: Mass ratio 1/q = m2,z/m1,z. The data increasingly favor comparable-mass
binaries as higher-order harmonics are included in the analysis. Right panel: Aligned e↵ective spin �e↵ . The noticeable di↵erences between
our �e↵ distributions and the solid curve are also apparent in Figures 7 and 4: our analysis favors a slightly higher e↵ective spin.

FIG. 6. Likelihood versus spins: Nonprecessing: Maximum likelihood ln L (colors, according to the colorbar on the right) as a function of
spins �1,z, �2,z for di↵erent choices of mass ratio 1/q, computed using all l = 2 modes. Each point represents a nonprecessing NR simulation
from Table III. To increase contrast, simulations with ln L < 171 have been suppressed. Only simulations with fstart < 30 Hz are included.
Dashed lines and labels indicate contours of constant �e↵ . The left two panels show that for mass ratio q ' 1, the marginalized likelihood is
approximately constant on lines of constant �e↵ . For more asymmetric binaries (q = 2), the marginalized likelihood is no longer constant on
lines of constant �e↵ . Along lines of constant �e↵ and q, ln L decreases versus �2,z

We label �(3) and �(3) with a superscript “3” to distinguish this
result from the corresponding result using only l = 2 modes
shown in Eq. (9).

For nonprecessing sources, using Eq. (5) and a uniform
prior in �1,z, �2,z and the two component masses, we can eval-
uate the marginal posterior probability p(z) for any intrinsic
parameter(s) z. The two-dimensional marginal posterior prob-
ability is shown as a green solid (l = 2) and dashed (l  3) line
in Figures 4 and 7. Both the l = 2 and l  3 two-dimensional
distributions are in reasonable agreement with the posterior
distributions reported in LVC-PE[1] for nonprecessing bina-
ries, shown as a black curve in these figures. These two-
dimensional distributions are also consistent with the dis-
tribution of simulations with lnLmarg > 268.6 (i.e., black
points). Additionally, Figure 5 shows several one-dimensional
marginal probability distributions (m1,z,m2,z, q, �e↵), shown as
dotted (l = 2) or dashed lines (l  3); for comparison, the solid
line shows the corresponding distribution from LVC-PE[1] for
nonprecessing binaries.

Despite broad qualitative agreement, these compar-
isons highlight several di↵erences between our results and
LVC-PE[1], and between results including l = 2 modes and
those including all l  3 modes. For example, Figure 4 shows
that the distribution in Mz, q, �e↵ , computed using our method
(solid green lines and black points) is slightly di↵erent than
the corresponding distributions in LVC-PE[1]. As seen in this
figure and in Figure 7, the posterior distribution in LVC-PE[1]
includes binaries with low e↵ective spin, outside the support
of the distributions reported here. These di↵erences are di-
rectly reflected in the marginal posterior p(�e↵) (right panel
of Figure 5) and in Table I. Our results for the component
spins �1,z, �2,z, the e↵ective spin �e↵ , the total mass Mz, and
the mass of the more massive object m1,z do not change sig-
nificantly when l = 3 modes are included. The mass ratio
distribution p(q) is also slightly di↵erent from LVC-PE[1]
when l = 3 modes are included; see Figure 5. Compared
to prior work, this analysis favors comparable-mass binaries
when higher modes are included; see, e.g., the center panel of

Original PE 
NR l = 2 
NR l=3

http://arxiv.org/abs/arXiv:1606.01262
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Eccentricity

• Eccentric binaries circularise (Peters 1964): e ~ 0 well before merger. 
• Measure/bound eccentricity of GW events such as GW150914? 
• Need eccentric waveform model 
• Use post-Newtonian and Numerical Relativity 
• Only need late inspiral+merger; e.g. last 5 orbits for GW150914 
• Eccentric PN inspiral + NR circular merger 
• IH talk at GR21 - paper soon!
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Precessing BBH parameter space coverage

• ~120 new precessing waveforms run by AEI, CITA with SpEC 

• Extend range of parameter space in mass ratio and spin 

• Several spin angles for each (q, chi) combination

 5

Extending precessing parameter space coverage

https://www.black-holes.org/waveforms/
 15

Tracking precession: orbital plane

PrecBBH:003

The orbital plane precession and nutation is captured well!
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Open source Numerical Relativity

• Cactus framework: open source, developed by Ed Seidel's group at the 
Albert Einstein Institute in the late 90s 

• Foundation of most NR codes today 

• Einstein Toolkit is an entirely open source set of NR codes based around 
Cactus 

• See einsteintoolkit.org/about/gallery for examples 

• GW150914 example coming soon, including fully open parameter file, 
instructions, and tutorials for analysis and visualisation 
[Wardell, IH, Bentivegna] 

• Simulate GW150914 on ~100 cores in a few days yourself!

http://einsteintoolkit.org/about/gallery
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GALLERY: BINARY BLACK HOLE
GW150914
On February 11, 2016, the LIGO collaboration announced that they
had achieved the first ever direct detection of gravitational waves.
The gravitational waves – which were detected by both LIGO
detectors on September 14, 2015 at 09:51 UTC – were generated
over a billion years ago by the merger of a binary black hole
system. The announcement came along with the simultaneous
publication of a peer-reviewed paper [Phys. Rev. Lett. 116,
061102]; several other papers giving technical details; and a full
release of the data from the detection, which has been given the
name GW150914.

The LIGO analysis found that the merger consisted of a 36 + 29
solar mass binary black hole system, the remnant was a 62 solar
mass black hole, and the remaining 3 solar masses were radiated
as gravitational waves. This simulation shows how to use the
Einstein Toolkit to evolve the last 6 orbits and merger of a binary
black hole system with parameters that match the GW150914
event. Along with the associated tutorials, it shows how to extract
waveforms and other physical properties from the simulated
spacetime; how to visualise the 3D data generated by the
simulation; and how to produce a numerical relativity waveform of
the kind that may be used for the analysis of LIGO signals.

A subset of the simulation data — including everything required to
follow the VisIt and SimulationTools tutorials without having to run
the simulation — is available for download below. The full
simulation output additionally includes multiple resolutions and
considerable 2D and 3D output, and totals several terabytes in
size; as such it will be made available for download once a suitable
distribution method has been found.

SIMULATION DETAILS

einsteintoolkit.org 
(soon)

http://einsteintoolkit.org


Physical parameters

Initial separation D 10 M

Mass ratio q = m1/m2 36/29 ~ 1.24

Spin χ1 = a1/m1 0.31

Spin χ2 = a2/m2 -0.46

Physical properties

Number of orbits 6

Time to merger 899 M

Mass of final BH 0.95 M

Spin of final BH (dimensionless) 0.69

Computational details

Parameter
file GW150914.rpar

Thornlist GW150914.th (ET_2015_11 release thornlist with
Llama multi-block code added)

Submission
command

simfactory/bin/sim create-submit GW150914_28 --
define N 28 --parfile
repos/GW150914/ParameterFiles/GW150914.rpar
--procs 120 --walltime 24:00:00

Total
memory 98 GB

Run time 5.6 days on 120 cores (Intel(R) Xeon(R) CPU
X5650 @ 2.66GHz)

Cost 16108 core hours

TUTORIALS
Compile and run: Compile the code and run the simulation
VisIt: Visualise the data using VisIt
SimulationTools tutorials: these can be run with Mathematica, or
can be viewed interactively with the free Wolfram CDF Player.
Download a zip file of all SimulationTools tutorials, or download
them individually below.
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them individually below.



BlackHoles: analysing the physical properties of the black
holes
SimulationProperties: studying the numerical properties of the
simulation
Visualisation: visualising the 3D data generated by the
simulation.
Waveforms: extracting waveforms from the simulated
spacetime

SIMULATION DATA

Lightweight simulation data with only a small number of iterations
of 3D output is available for download from Zenodo:

DOIDOI 10.5281/zenodo.6021310.5281/zenodo.60213

The full simulation comprises several terabytes of data and can be
made available upon request.

IMAGES AND MOVIES

Horizons

 

The real part of , the component of the Riemann tensor
representing outgoing gravitational radiation.

Elevation plot of the magnitude of  on the equatorial plane at 
.

Gravitational waves

Ψ4

Ψ4
t = 0



Apparent horizons of the orbiting black holes (left) and first
common apparent horizon with colormap corresponding to the
magnitude of  (right).

Horizon coordinate trajectories

Coordinate tracks of the centroids of the apparent horizons
showing inspiral of the binary due to emission of energy and
angular momentum in gravitational waves

Gravitational waveform

Ψ4 The l=2, m=2 spherical harmonic mode of the gravitational wave
strain. The strain is what is measured by LIGO.

Curvature scalars

 

Scalar curvature invariants computed from the Riemann tensor, 
, and its dual, . Left: the Kretschmann scalar, 

. Right: the Chern-Pontryagin scalar, .
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Thank you!

• Useful information: 

• Book: Introduction to 3+1 Numerical Relativity 
(Miguel Alcubierre) 

• SXS waveform catalogue: black-holes.org/waveforms 

• einsteintoolkit.org/about/gallery 

• PhenomD papers: 1508.07250 and 1508.07253

http://einsteintoolkit.org/about/gallery

