Cactus Einstein Toolkit

Beyond the Algorithm: Supporting Infrastructure for
Large Scale Simulation Codes

lan Hinder

Max Planck Institute for Gravitational Physics
(Albert Einstein Institute)
Potsdam, Germany

NCSA Software Seminar, Urbana-Champaign, July 2016

Overview

- The Einstein Toolkit and Cactus
- Automatic code generation

- Abstracting the machine

-+ Reproducibllity

- Software quality control

The Einstein Toolkit and Cactus: Background

- Open code for Numerical Relativity Binary b|'ack hole merger and

+ einsteintoolkit.org ' gravitational waves
- Origin: Ed Seidel's group at AEl: binary
black hole problem, 1995—

- 100 registered users in 86 different groups
worldwide

- Einstein equations:

- complicated partial differential
equations solved with finite
difference methods

- Based on Cactus framework

- OpenMP/MPI parallelism from 100s to
1000s of cores

- Framework vs library

- large number of components
("thorns”) plugged together

- communication via well-defined
simple interfaces

http://einsteintoolkit.org

Cactus framework

- Cactus modules called thorns, all talk to the flesh

cactuscode.org

. Each thorn has: Executable

- Metadata files (interfaces, parameters, scheduling)

- Source files (C/C++/Fortran: physics equations, algorithms, infrastructure)
- The flesh:

- Defines APls for communication between thorns

- Intent: many groups can independently develop public and private codes which all
work together

http://cactuscode.org

The Einstein Toolkit

- Cactus:
- flesh
- support thorns
- Physics thorns
- Mesh refinement thorns
- Numerical methods thorns (interpolator, time integrator, etc)

- Infrastructure thorns (3D output, base interfaces, termination management
etc)

- 226 Cactus thorns in total
- Kranc automatic code generator: generates Cactus thorns

- SimFactory: manage simulations/compilation across diverse HPC machines

Kranc St

Automatic code geﬂeratiOﬂ Kranc Assembles Numerical Code

- Sascha Husa, IH, Christiane Lechner, 2004

- High level description of equations, including tensorial
- "Compiled" to complete Cactus thorn

- Application developer sees equations, not code

- Almost all Cactus boilerplate hidden

- Implemented in Mathematica

+ Kranccode.org

script thorn

http://kranccode.org

Automatic code generation:
—Xample wave eqguation

initialSineCalc = evolveCalc =

{ {
Name -> "initial sine",
Schedule -> {"AT INITIAL"},
Equations ->

Name -> "calc rhs",
Schedule -> {"in MoL CalcRHS"},

Equations ->

{ {
phi -> Sin[2 Pi (x - t)], dot[phi] -> pi,
pi -> -2 Pi Cos[2 Pi (x - t)] dot[pi] -> Euc[ui,uj] PD[phi,li,17]
} }
}i }i
CreateKrancThornTT[groups, ".", "SimpleWave",

Calculations -> {initialSineCalc, evolveCalc},
PartialDerivatives -> derivatives, DeclaredGroups -> {"evolved group"}];

Automatic code generation

- Solve time evolution PDEs in
3D

High performance parallel
codes

End users can treat as black
box

- Arbitrary order finite differencing

Existing codes benefit from
new Kranc features

Automatic code generation: Features

- Arbitrary order finite differencing
- Mesh refinement and multi-block grids

- OpenMP

- High level optimisations:

- Common subexpression climination

- Loop splitting and joining

- Floating point instruction vectorisation: generate
compiler intrinsics for all operations

- Experimental support for CUDA/OpenCL, as well as
Xeon Phi

- Can implement many of these algorithms at a very
high level (in Mathematica) Open M P

Abstracting the machine:
The Simulation Factory

- Manage simulations: uniform interface
across supercomputers sim setup
: Erik Schnett . . .
by Erik Schnetter sim build —-thornlist
- Hide low-level cluster-specific details thornlists/mythorns.th

- Machine database: many XSEDE and

institution clusters sim submit mysim —-

| | parfile par/mysim.par
- Enforce/encourage best practices and avoid ——procs 128 ——walltime

common mistakes 12:00: 00

- New version under development (IH, Barry | | | |
Wardell, Erik Schnetter) sim list-simulations

- Code-agnostic; not specific to Cactus sim stop mysim

- Want to try it out with other codes

- Mostly working

- http://simfactory.org

http://simfactory.org

Abstracting the machine:
Source code and building

- Centralisation:
- "Which machine did I fix that bug on?"
- Keep source tree in single central location
- Sync code to remote clusters (rsync)
- Building:
- Database of Cactus "optionlists” for each machine

- Environment setup commands: module etc

sim sync bluewaters

sim ——remote bluewaters build

Abstracting the machine:
Simulations

Submitting a simulation to the queue:
Submit scripts for each machine in machine database
Specify parameter file, number of cores, walltime

- Also: undersubscribing, OpenMP threads, more

sim ——remote bluewaters submit mysim
——parfile par/mysim.par ——procs 128 ——walltime 12:00:00

- Simulation lifecycle management: simulation states:
active(running,queued)/inactive

Abstracting the machine:
The Simulation Factory

- Long simulations split into segments
- One segment per job walltime, e.g. 24 h
- Best practice:
- No job should overwrite data from a previous job
- Checkpoint files hardlinked between segments
- Simulations automatically submit the next segment (new version)
- Termination conditions defined by regexps
- FinalTime, EndOf\Walltime, DiskQuotakExceeded, UnknownError
- Termination actions: Continue, Error, Email

- Sim pause, sim continue - request immediate checkpoint/restart

Reproducibility

- Copy of source code preserved in every
simulation (tar.gz archive)

- Always know what code was run, even 10
years later

- But: difficult to relate to version controlled
commits

- Multiple components: multiple repositories

- Difficult to identify a single revision of
"the code”

- Experimental use of git submodules to
pull everything together

Releases

- Every 6 months

- Run tests on all supported HPC systems, track down
and fix problems

- Commit to backporting serious issues to last release

"Known good" version that people can use

Testing

- (Cactus has standard mechanism for test cases

- Mostly regression tests: "does this parameter file lead to the same
results as the reference data”?”

- Problem: developers don't run them
- Solution: Tests run after each commit on a central server

- Jenkins web application to manage
- Distributed build nodes

Integrating with HPC systems is a problem

Testing: Jenkins web application

|06 ElnstelnToolkit [Jenkins] '3
Al 2SO + | nttps@ builc.barrywardell.nct C | Beader || O
8 Jenkins EE @ o signup
J=nkins ENAELE AUTC RE-RESH
&} Pecple Al Cheror Dasboard EinsteinToolkit

= Build History 1oveVlow e

“} Claim Report S W Name | Last Success Last Failure Last Duration Test Result
‘@ Disk usage EinsteinToolxit 19hr-y30g 4 OAYSTRI= 4 b7 min ino failures)
— - #825
& Jobmport Plugin - ElnsteinTool{tDoc 19 hr- #423 ?;37’ BEYS 48 min S N/A
TEETT WY _ ga 4 days 1 hr- " b Fadl oo
Bulld Queue _ J EinsleinToul<ilFull 19 hr - #279 o 7ty 31 min 3 (00 (aily-es
hlo/bulldein tho quoue. - EinsteinToolstReleased 0 ©0®" 1M080% yprgymn B inofaiuces)
. lcon: SML i) i
Build Executor Status = Lejend [| ESSforal [§ESS forfallures [HBSE for Just latest oullds
= master
1 kcle
N AEl
1 k=
= cct
1 kle

8, perimeteri (offline)

8, ucd (offiine)

Tickets and review

- Ticket system (ITRAC) where people can report
poroblems and track discussion and patches

- Changes discussed in a ticket and fixes or
enhancements reviewed by someone else

- 2nd pair of eyes

- Not always applicable

Thank you!

Room 4018, leaving tomorrow

lan.hinder@aei.mpg.de

https://members.aei.mpg.de/
janhin/

einsteintoolkit.org

cactuscode.org

simfactory.org

Kranccode.org

build.barrywardell.net

mailto:ian.hinder@aei.mpg.de
https://members.aei.mpg.de/ianhin/
https://members.aei.mpg.de/ianhin/
http://einsteintoolkit.org
http://cactuscode.org
http://simfactory.org
http://kranccode.org
http://build.barrywardell.net

