
Beyond the Algorithm: Supporting Infrastructure for
Large Scale Simulation Codes

Ian Hinder

NCSA Software Seminar, Urbana-Champaign, July 2016

Max Planck Institute for Gravitational Physics

(Albert Einstein Institute)

Potsdam, Germany

Einstein ToolkitCactus

Overview

• The Einstein Toolkit and Cactus

• Automatic code generation

• Abstracting the machine

• Reproducibility

• Software quality control

The Einstein Toolkit and Cactus: Background
• Open code for Numerical Relativity
• einsteintoolkit.org
• Origin: Ed Seidel's group at AEI: binary

black hole problem, 1995–
• 100 registered users in 56 different groups

worldwide
• Einstein equations:

• complicated partial differential
equations solved with finite
difference methods

• Based on Cactus framework
• OpenMP/MPI parallelism from 100s to

1000s of cores
• Framework vs library

• large number of components
("thorns") plugged together

• communication via well-defined
simple interfaces

Binary black hole merger and
gravitational waves

http://einsteintoolkit.org

Cactus framework

• Cactus modules called thorns, all talk to the flesh 
 
 
 
 
 
 
 
 
 

• Each thorn has:
• Metadata files (interfaces, parameters, scheduling)
• Source files (C/C++/Fortran: physics equations, algorithms, infrastructure)

• The flesh:
• Defines APIs for communication between thorns

• Intent: many groups can independently develop public and private codes which all
work together

Thorn Thorn Thorn Thorn

Flesh

Executable

cactuscode.org

http://cactuscode.org

The Einstein Toolkit

• Cactus:

• flesh
• support thorns

• Physics thorns

• Mesh refinement thorns
• Numerical methods thorns (interpolator, time integrator, etc)

• Infrastructure thorns (3D output, base interfaces, termination management
etc)

• 226 Cactus thorns in total

• Kranc automatic code generator: generates Cactus thorns
• SimFactory: manage simulations/compilation across diverse HPC machines

Automatic code generation

• Sascha Husa, IH, Christiane Lechner, 2004
• High level description of equations, including tensorial
• "Compiled" to complete Cactus thorn
• Application developer sees equations, not code
• Almost all Cactus boilerplate hidden

• Implemented in Mathematica
• kranccode.org

Equation
script

Cactus
thorn Executable ResultsKranc ClusterCompiler

http://kranccode.org

Automatic code generation: 
Example wave equation

initialSineCalc =
{
Name -> "initial_sine",
Schedule -> {"AT INITIAL"},
Equations ->
{
 phi -> Sin[2 Pi (x - t)],
 pi -> -2 Pi Cos[2 Pi (x - t)]
}

};

CreateKrancThornTT[groups, ".", "SimpleWave",
 Calculations -> {initialSineCalc, evolveCalc},
 PartialDerivatives -> derivatives, DeclaredGroups -> {"evolved_group"}];

evolveCalc =
{
 Name -> "calc_rhs",
 Schedule -> {"in MoL_CalcRHS"},
 Equations ->
 {
 dot[phi] -> pi,
 dot[pi] -> Euc[ui,uj] PD[phi,li,lj]
 }
};

Automatic code generation

• Solve time evolution PDEs in
3D

• High performance parallel
codes

• End users can treat as black
box

• Arbitrary order finite differencing
• Existing codes benefit from

new Kranc features

Automatic code generation: Features

• Arbitrary order finite differencing
• Mesh refinement and multi-block grids
• OpenMP
• High level optimisations:

• Common subexpression elimination
• Loop splitting and joining

• Floating point instruction vectorisation: generate
compiler intrinsics for all operations

• Experimental support for CUDA/OpenCL, as well as
Xeon Phi

• Can implement many of these algorithms at a very
high level (in Mathematica)

Abstracting the machine: 
The Simulation Factory

• Manage simulations: uniform interface
across supercomputers

• by Erik Schnetter

• Hide low-level cluster-specific details

• Machine database: many XSEDE and

institution clusters

• Enforce/encourage best practices and avoid

common mistakes

• New version under development (IH, Barry

Wardell, Erik Schnetter)

• Code-agnostic; not specific to Cactus

• Want to try it out with other codes
• Mostly working
• http://simfactory.org

sim setup

sim build --thornlist
thornlists/mythorns.th

sim submit mysim --
parfile par/mysim.par
--procs 128 --walltime
12:00:00

sim list-simulations

sim stop mysim

http://simfactory.org

Abstracting the machine: 
Source code and building

• Centralisation:
• "Which machine did I fix that bug on?"

• Keep source tree in single central location
• Sync code to remote clusters (rsync)

• Building:
• Database of Cactus "optionlists" for each machine

• Environment setup commands: module etc

sim sync bluewaters

sim --remote bluewaters build

Abstracting the machine: 
Simulations

• Submitting a simulation to the queue:

• Submit scripts for each machine in machine database

• Specify parameter file, number of cores, walltime

• Also: undersubscribing, OpenMP threads, more

sim --remote bluewaters submit mysim 
 --parfile par/mysim.par --procs 128 --walltime 12:00:00

• Simulation lifecycle management: simulation states:  
active(running,queued)/inactive

Abstracting the machine: 
The Simulation Factory

• Long simulations split into segments
• One segment per job walltime, e.g. 24 h
• Best practice:

• No job should overwrite data from a previous job
• Checkpoint files hardlinked between segments
• Simulations automatically submit the next segment (new version)
• Termination conditions defined by regexps

• FinalTime, EndOfWalltime, DiskQuotaExceeded, UnknownError
• Termination actions: Continue, Error, Email
• sim pause, sim continue - request immediate checkpoint/restart

Reproducibility

• Copy of source code preserved in every
simulation (tar.gz archive)

• Always know what code was run, even 10
years later

• But: difficult to relate to version controlled
commits

• Multiple components: multiple repositories

• Difficult to identify a single revision of 
"the code"

• Experimental use of git submodules to
pull everything together

Releases

• Every 6 months

• Run tests on all supported HPC systems, track down
and fix problems

• Commit to backporting serious issues to last release

• "Known good" version that people can use

Testing

• Cactus has standard mechanism for test cases

• Mostly regression tests: "does this parameter file lead to the same
results as the reference data?"

• Problem: developers don't run them

• Solution: Tests run after each commit on a central server

• Jenkins web application to manage

• Distributed build nodes

• Integrating with HPC systems is a problem

Testing: Jenkins web application

Tickets and review

• Ticket system (TRAC) where people can report
problems and track discussion and patches

• Changes discussed in a ticket and fixes or
enhancements reviewed by someone else

• 2nd pair of eyes

• Not always applicable

Thank you!

• Room 4018, leaving tomorrow

• ian.hinder@aei.mpg.de

• https://members.aei.mpg.de/
ianhin/

einsteintoolkit.org

cactuscode.org

simfactory.org

kranccode.org

build.barrywardell.net

mailto:ian.hinder@aei.mpg.de
https://members.aei.mpg.de/ianhin/
https://members.aei.mpg.de/ianhin/
http://einsteintoolkit.org
http://cactuscode.org
http://simfactory.org
http://kranccode.org
http://build.barrywardell.net

