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Introducing SimulationTools

• A free software package for the analysis of numerical simulation data in 
Mathematica.


• Functional interface to your simulation

• Used daily for 
science - heavily 
optimised for 
performance


• Generic and 
modular - can be 
extended to 
support different 
codes



Design Principles

• Clean high-level interface - hide low-level technical details


• Follow Mathematica conventions wherever possible


• Consistency and simplicity


• Extensible


• General


• Use domain language of the user, not of the implementation:


• ReadBHCoordinates[“mysim”]  
 
not 
 
Import[“/simulations/mysim/output-0000/
tracker0.asc”,”Table”][[All,{1,5}]]  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Data Representations

• List with coordinates


• Introduce a new Mathematica type



Heavyweight data import

• Terabytes of 3D HDF5 
files


• Import reads HDF5:


• Separate files: one 
per supercomputer 
process (efficiency)


• Adaptive mesh 
refinement


• NRMMA Cactus file 
reader: high-level 
interface to variables 
in a simulation

• Extensible and optimised



Visualisation and Analysis

• Once data is in Mathematica, 
you can do anything!


• Basic algebraic operations


• Any Mathematica function 
can be mapped over data 
variables (cf. Map, 
MapThread)


• Interpolation to get 
continuous functions rather 
than list data


• Line/surface integrals


• Plotting, movies, 
Manipulate



Remote Visualisation

Large 
data

Mathematica 
Kernel

ssh 
tunnel

Internet

Mathematica 
Frontend

Supercomputer• Large data on remote supercomputer


• Mathematica remote kernels:


• Notebook frontend on laptop/
workstation


• Kernel on remote machine


• Caveats:


• Requires Mathematica (and licence) on 
supercomputer


• Local notebook interface very sensitive 
to remote kernel hang (save often!)



Chunking

• Supercomputers restrict time for each job to ~24 hours


• Long-running simulations are split into chunks (checkpoint+recovery)


• NRMMA:


• Internal routines combine chunks automatically


• User never needs to know about simulation chunking


• Applies to all file access in NRMMA



Examples: Simulation Overview



Examples: Expressions on Data



Examples: Expressions on Data



Examples: Expressions on Data

• Make movies of derived 
variables


• Do any other analysis 
needed



Examples: Falloff of gravitational field

• Measure how gravitational field behaves along outgoing radial light paths


• For each iteration, have 1D simulation output data (HDF5)


• Read these into Mathematica (ReadGridFunction):


• Compute light paths


• Interpolate gravitational field 
onto them


• Measure falloff of field along light 
paths (FindFit)
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�
Fallo⇥ rate p

Expected Ref. [1] Measured

0 5 2.00 4.8(4)
1 4 2.48 3.91(7)
2 3 2.99 2.99307(6)
3 2 1.99 2.0135(6)
4 1 0.99 1.01333(7)

TABLE III. Fallo⇥ rates for the Weyl scalars, including the
rate expected from the peeling theorem, the rate obtained
in [1], and the rate measured from our simulations for the
approximate null geodesic �1. The error in the last digit in-
dicated in parentheses is a coarse estimate of the finite di⇥er-
encing error in the fallo⇥ rate.
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FIG. 2. The fallo⇥ of the Weyl scalars along the approximate
null geodesic �1 corresponding to the first inspiral peak of
|�4| on the x-axis. The fallo⇥ rates obtained from fitting in
the intervals indicated by vertical black lines are indicated in
Table III.

in the last digit is indicated in parentheses and again
should be taken as only a coarse estimate. The rates
obtained from �2–�7 (not shown) di⇥er by less than 2%
from those obtained for �1 (only the curves on which
the rates are su⌅ciently well resolved are included). Our
measured rates are within 4% of the values expected from
the peeling theorem.

By studying the peeling properties of each of the Weyl
scalars we may gain insight into where �4 may be used
as a reasonable measure of the gravitational wave sig-
nal. This is closely related to the identification of the
regions referred to as near zone, transition zones and ra-
diation zone in [33] (note that these are not the same
zones referred to in [56]). We illustrate this visually (for
the curve for �1) in Fig. 3, where we plot the relative
contribution from each of the Weyl scalars to the total
curvature, which we define as |�| =

�4
n=0 |�n|. Each

shaded region Zn indicates the region in which all the
�k with k � n give a contribution of more than 5% to
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FIG. 3. The fractional contribution of each �n (measured
along �1) to the total curvature, which we define as |�| =P4

n=0 |�n|. The zones Zn are the regions in which �k, for
k � n, give a contribution of more than 5% to �. Beyond r >⇥
200M , �4 dominates and may be reliably used as a measure
of gravitational radiation. Note that Z0 does not appear as
�0 is already below 5% at r = 10M , where we can first start
tracking the peak in |�4|.

the total curvature (notice that this also comes with a
change in the algebraic properties of the spacetime, since
the principal null directions “peel apart” as each �n be-
comes important with decreasing r). In other words, as
the source is approached from r = ⌅, Zn is the region
in which �n starts to make a significant contribution. In
the case of our BBH simulations, we find that �4 consti-
tutes more than 95% of |�| in the region r >⇥ 200M . We
observe that �3, �2 and �1 begin to contribute > 5% to
the curvature at r = 200M, 75M and 15M , respectively.
Note that the values of r depend on the curve �i along
which the fallo⇥ is measured and on the choice of cut-o⇥
percentage. For example, the regions Zn start at lower
radii for the subsequent peaks resulting in Z4 beginning
at r ⇤ 100M rather than 200M . This may be under-
stood from the fact that these peaks closer to the merger
have stronger gravitational wave content with the result
that �4 is comparatively larger.

IV. DISCUSSION

We have performed a 3-orbit BBH simulation and mea-
sured the fallo⇥ of the Weyl scalars, obtaining results in
agreement with the peeling theorem to within 4%.

There are many approximations introduced in convert-
ing the precise assumptions of the theorem into practical
numerical calculations. For example, in this work we
approximated null geodesics by tracking the location of
peaks in |�4| along the x-axis. This neglects any angular
component in the null geodesics and also assumes that

• Consistent with previously 
disputed theorem of Sachs, 
Newman and Penrose [Hinder et 
al, 2011]



Development/Quality

• Documented (usage 
messages, examples, tutorials) 

• Unit tests  

• Developed in package (.m) files 
for easy version control


• BitBucket project-hosting



Enhancements to Mathematica

• Detected error conditions in NRMMA are reported via exceptions: 
computations do not continue uselessly


• Uncaught exceptions give stack backtraces; helps in debugging


• Warnings for assignments to undeclared variables


• Our own custom HDF5 reader - mostly compatible with built-in Import


• Avoid memory leaks and crashes when Import used with very large HDF5 
data


• Available already: http://sourceforge.net/p/h5mma/

http://sourceforge.net/p/h5mma/


Summary and Future Plans

• Functional interface to simulation data


• Highly-optimised data readers for Cactus code; additional readers possible


• Bring all the power of Mathematica to your simulation analysis!


• Planned:


• Public release (GPL) [still polishing!]


• Think of a better name


• Remote data access at HDF5 level; avoid need for remote kernel on 
supercomputer


• Transparent handling of mesh-refined data grid as an object


