
Session Program

Time Speaker Talk

14:30 Hinder, Ian A Review of Recent Developments in Numerical and Analytical Relativity

15:00 Nagar, Alessandro Gravitational waves from coalescing compact binaries: interfacing analytical and 
numerical techniques

15:30 Le Tiec, Alexandre The overlap of numerical relativity, perturbation theory and post-Newtonian theory in 
the binary black hole problem

Coffee Break

16:30 Calderón Bustillo, 
Juan

Accuracy of Complete Hybrid PN/NR Descriptions Of The Gravitational Radiation 
From Non-Precessing Compact Binaries

17:00 Vano-Vinuales, Alex Free Hyperboloidal Evolution In Spherical Symmetry

17:30 Puerrer, Michael Accelerating Parameter Estimation of Gravitational Waves from Black Hole Binaries 
with Reduced Order Quadratures

18:00 Balmelli, Simone The description of next-to-leading order spin-spin effects in an Effective-One-Body 
Hamiltonian

Author Poster (FISICA Marconi, all week)

Celestino, Juliana Nonlinear evolution of cylindrical gravitational waves

Ilseven, Ekin Lattice Boltzmann Model for Numerical Relativity

mailto:ian.hinder@aei.mpg.de
mailto:alex@nagarsoft.com
mailto:letiec@obspm.fr
mailto:juan.calderon.bustillo@gmail.com
http://mg14reg.icra.it/mg14/FMPro?-db=3%5ftalk%5fmg14%5f.fp5&-format=riassunto2.htm&-lay=talk%5freg&-sortfield=order2&ps%3a%3aweb%5fcode=9255132936&main%5f1%3a%3aAttivo=yes&talk%5faccept=yes&-max=50&-recid=43188&-find=
mailto:alex.vano@uib.es
http://mg14reg.icra.it/mg14/FMPro?-db=3%5ftalk%5fmg14%5f.fp5&-format=riassunto2.htm&-lay=talk%5freg&-sortfield=order2&ps%3a%3aweb%5fcode=9255132936&main%5f1%3a%3aAttivo=yes&talk%5faccept=yes&-max=50&-recid=43595&-find=
mailto:Michael.Puerrer@astro.cf.ac.uk
http://mg14reg.icra.it/mg14/FMPro?-db=3%5ftalk%5fmg14%5f.fp5&-format=riassunto2.htm&-lay=talk%5freg&-sortfield=order2&ps%3a%3aweb%5fcode=9255132936&main%5f1%3a%3aAttivo=yes&talk%5faccept=yes&-max=50&-recid=43158&-find=
mailto:balmelli@physik.uzh.ch
http://mg14reg.icra.it/mg14/FMPro?-db=3%5ftalk%5fmg14%5f.fp5&-format=riassunto2.htm&-lay=talk%5freg&-sortfield=order2&ps%3a%3aweb%5fcode=9255132936&main%5f1%3a%3aAttivo=yes&talk%5faccept=yes&-max=50&-recid=43255&-find=
mailto:juliana.efei@gmail.com
http://mg14reg.icra.it/mg14/FMPro?-db=3%5ftalk%5fmg14%5f.fp5&-format=riassunto2.htm&-lay=talk%5freg&-sortfield=order2&ps%3a%3aweb%5fcode=9255132936&main%5f1%3a%3aAttivo=yes&talk%5faccept=yes&-max=50&-recid=43704&-find=
mailto:ekinilseven@gmail.com
http://mg14reg.icra.it/mg14/FMPro?-db=3%5ftalk%5fmg14%5f.fp5&-format=riassunto2.htm&-lay=talk%5freg&-sortfield=order2&ps%3a%3aweb%5fcode=9255132936&main%5f1%3a%3aAttivo=yes&talk%5faccept=yes&-max=50&-recid=43835&-find=


Lattice Boltzmann Model for Numerical Relativity 
 

E. Ilseven, M. Mendoza 

Bona%Masso%Formalism%
%

First%order%hyperbolic%formula7on%

of%Einstein%equa7ons%

La;ce%Boltzmann%Method%
%

A%widely%applicable%CFD%method%

solving%any%conserva7on%equa7on%

The$model$is$tested$through:$
$

•  Infla7on%of%flat%FLRW%

universe%

•  Apples%with%Apples%tests:%

%H%Gauge%Wave%

%H%Linear%Wave%

Moreover$inves3gated$
the$advantages$of$LBM:$
%

•  Numerical%Diffusivity%

•  Parallelisa7on%

0 200 400 600 800−6

−4

−2

0

2

4

6x 10−4

x (in num. units)

_
 −

1

 

 Initial
t = 500 − Sim
t = 500 − Ana
t = 1000 − Sim
t = 1000 − Ana

100 101

102

Core Number

C
om

pu
ta

tio
n 

tim
e 

(in
 s

ec
.)

 

 

−1



Nonlinear evolution of cylindrical gravitational 
waves

• Juliana Celestino, Henrique P. de Oliveira, Eduardo L. Rodrigues 

• There is currently a vivid expectation of a direct detection of gravitational 
waves from one or more detectors built specially to this aim. Meanwhile, 
theoretical studies concerning the wave-forms generated by sources of 
gravitational radiation and their efficiency are of great interest and constitute a 
valid effort to understand the role played by the nonlinear character of Einstein 
equations. The use of numerical techniques is unavoidable if one wants to 
accomplish any success in exploring at theoretical level the fundamental 
aspects of gravitational wave emission. In spite of their unphysical character, 
cylindrical waves constitute an interesting nonlinear problem in which both 
polarization modes are present. We have constructed an efficient numerical 
code to integrate the field equations based on a combination of Galerkin and 
pseudospectral methods. As usual the code tests were performed quite 
satisfactorily, and we have focused on the nonlinear evolution.



A Review of Recent Developments in Numerical 
and Analytical Relativity
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Overview

• The Numerical Relativity field 

• Analytic inspiral-merger-ringdown waveform families 

• Edges of NR parameter space 

• A selection of recent results



The Numerical Relativity field

• 118 papers related to Numerical Relativity in the past year  

• NR waveform catalogues: 

• NINJA 1, 23 waveforms, 2009 

• NINJA 2, 60 hybrid waveforms, 2012 

• NRAR, 25 waveforms, 2013 

• SXS: Originally 174 waveforms.  Now 201.  2013 
onwards.



Latest "Analytic" waveform models

• Effective-One-Body variants: 

• Precessing SEOBNRv3 (Taracchini et al. 2014) and Damour and 
Nagar, 2014 (recalibrated June 2015) 

• System of ODEs solved via numerical integration 

• Computational cost can be decreased via use of reduced-order 
modelling (see Michael Pürrer's talk today) 

• Precessing PhenomP - Hannam et al. 2014: 

• "Simple" closed-form frequency-domain expression for h; single-
spin and stationary-phase approximations



Latest "Analytic" waveform models

• PhenomD (in preparation, PRELIMINARY): 
• 19 calibration points in q, S space including q=18, 𝞆1=-0.8 
• Mismatch < 1% over calibration range for 47 waveforms0LVPDWFK��3KHQRP'�YV������+\EULGV

�(DUO\�D/,*2�1RLVH�FXUYH
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Edges of NR parameter space

• Number of cycles / lowest frequency 

• High spin 

• High mass ratio



Longest NR waveform

• SpEC code 
• Mass ratio q=7 
• Separation D = 

27 M 
• NR waveform 

covers aLIGO 
band for 
M1+M2 >  
45.5 M☉

2

Initial Data Inspiral Remnant properties
D0/M 103MW0 106ȧ0M EADM/M JADM/M2 m1/m2 105e T/M N Mf /M S f /M2

f
12.2 21.1541 �47.99 0.996211 0.4510 6.99997(2) < 6 4,100 20 0.98771(1) 0.32830(3)
27 6.7930 0 0.998112 0.6123 7.00000(1) 34 106,000 176 0.98762(14) 0.32827(2)

TABLE I. Properties of the two NR simulations: The first block lists initial separation D0, orbital frequency W0, radial velocity ȧ0, ADM
energy EADM and angular momentum JADM in units of total mass M = m1 +m2. The middle block lists mass ratio m1/m2, eccentricity e , time
duration T and number of orbits N until merger. The final block lists remnant mass Mf and spin S f .

many months or even years of wall-clock time. Therefore
progress toward longer simulations has been sluggish, with T
increasing by only about a factor of 2 to 3 during the last five
years [25, 26, 28–30]. The duration T needed to close the gap
depends on the binary parameters and the detector bandwidth.
Here we start addressing the issue of the gap by focusing on
the nonspinning case and high mass ratio, q = m1/m2 = 7, for
which the PN approximants can greatly differ [22, 31]. We
present a new NR simulation that extends T by a factor of 20
and reduces the initial frequency fini by a factor of 3. With
its comparatively high mass ratio, the new simulation probes
an astrophysically relevant parameter regime for BH-BH and
NS-BH binaries and for certain total masses covers the entire
frequency band of advanced LIGO (aLIGO) and Virgo. We
describe challenges involved in carrying out this new simula-
tion, most notably an instability that causes the center of mass
(CoM) of the binary to move, and we suggest improvements
for future long simulations. We then compare the new simu-
lation with existing analytical waveform models to assess the
impact of waveform model errors on the detection rate of ad-
vanced detectors.

Numerical-relativity waveforms. We report on two new
simulations of a nonspinning BH binary with mass ratio q =
m1/m2 = 7. The short simulation is of typical length: 20
orbits, T = 4,100M. The long simulation, the main focus
of this paper, is about 25 times longer. Both simulations
are computed using the Spectral Einstein Code (SpEC) [32].
The short simulation uses established computational tech-
niques [25]. The speed-up needed for the long simulation
is the result of a series of code changes including task-based
adaptive parallel load-balancing, live timing-based selection
of the most efficient algorithm (when multiple implementa-
tions of the same function are available), a modified mem-
ory layout to allow more efficient calls to low-level numeri-
cal packages and a more efficient implementation of the Gen-
eralized Harmonic evolution equations. Figure 1 shows the
new long waveform and Table I presents additional details
about both simulations. Geometrized units G = c = 1 are
used in Table I and throughout this paper. The top inset of
Fig. 1 shows the spectra of the (2,2) spherical harmonic wave-
form modes. The long simulation covers the entire design-
aLIGO frequency range for nonspinning BH-BH binaries with
M & 45M�, and covers the early-aLIGO frequency range for
M & 11M�, including nonspinning NS-BH binaries3. In con-

3 For mass ratio 7, in absence of spin, we expect no observable differences
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FIG. 1. Overview of the new very long simulation. The main panel
shows the (2,2) spherical-harmonic mode of the GW strain, with en-
largements in the lower insets. The top inset shows the Fourier spec-
tra of the new waveform in blue and the NR-NR hybrid waveform
(used for comparisons with analytical models) in yellow, overlaid
with noise power spectral densities of aLIGO at the early (dashed
black) and design (solid black) sensitivity [4]. The waveforms in the
inset are scaled to total mass M = 45.5M� and luminosity distance
DL ⇡ 1.06 Gpc. For comparison, an older q = 6 waveform [24] of
representative length is shown in the main panel (offset vertically for
clarity) and in the power-spectrum inset.

trast, the q = 6 simulation plotted in green, which is represen-
tative of past simulations, starts at 3 times higher frequency,
and covers a much smaller portion of the aLIGO bandwidth
for a given M. Thus, we present here the first gravitational
waveform covering the entire design-aLIGO frequency band
for a nonspinning, compact-object binary at mass ratio q = 7
with a total mass as low as M = 45.5M�.

The short simulation is run at three different numerical
resolutions, and the long one at four resolutions. The long
simulation employs dynamical spectral adaptive mesh refine-
ment [34], so measured quantities (like BH masses or wave-
forms) do not always converge in a regular, predictable man-
ner with increasing resolution, as is the case when each resolu-
tion is defined by a fixed number of grid points. Furthermore,

in the merger signal between a BH-BH and a NS-BH binary [33].
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FIG. 3. Unfaithfulness of the hybrid NR-NR waveform against several analytical waveform models. Left panel: inspiral-only comparisons.
Right panel: IMR comparisons. Also shown in the left panel are SNR2

insp/SNR2
full�insp (solid black line) and SNR2

insp/SNR2
full�IMR (dot-dashed

black line), and in the right panel SNR2
IMR/SNR2

full�IMR (solid black line). The blue area indicates the NR error.

dropping any NR information, thus uncalibrated), the IMR
EOBNR models that were obtained by calibrating the EOB
model to NR simulations [20, 42, 43] (denoted in LAL as
EOBNRv2, SEOBNRv1 and SEOBNRv2), and the IMR phe-
nomenological models that were built combining PN and
NR results [17, 18] (denoted in LAL as PhenomB and Phe-
nomC). All the time-domain IMR waveforms are tapered us-
ing a Planck windowing function [44], both at the beginning
and at the end. We generate the model waveforms start-
ing from an initial GW frequency of Mw22 = 0.01317. For
inspiral-only models, we set fmax = 0.01176/M, the mini-
mum available final GW frequency among the time-domain
Taylor models, a value close to the innermost-circular-orbit
value in Schwarzschild spacetime (⇡ 0.01083/M), whereas
for the IMR comparisons fmax = •. Quite interestingly, the
inspiral-only comparisons give similar results when employ-
ing directly the long simulation instead of the NR-NR hybrid.

The blue shaded area in Fig. 3 represents the uncertainty
in the NR waveforms, estimated by computing F̄ between
the fiducial hybrid NR-NR waveform and the other 8 NR-NR
hybrids. Because the inspiral-only and IMR curves are calcu-
lated using different portions of the hybrid NR-NR waveform,
the same model may have different values in the two panels
for the same total mass. We vary the prescriptions used for
the hybridization (namely, position and width of the blending
window), and we find changes O(10�4) in the unfaithfulness
curves for low total masses. Thus, we consider our results ro-
bust. If general relativity correctly describes the GW signals
found in nature, then the unfaithfulness F̄ plotted in Fig. 3
yields a bound on the loss in detection rate due to modeling
error. For sources uniformly distributed in space, the rela-
tive loss in detection rate is ⇠ 3(dMM + dE) (see Sec. VB in
Ref. [41]) where dMM is the minimal match of the template
bank and dE=1�max~l hh

AR
22 ,hNR

22 i/||hAR
22 ||/||hNR

22 || is the inef-
fectualness. Here ~l describes all the binary parameters, not

just f0 and t0, and therefore dE  F̄ . Typically, dMM = 3%
in LIGO searches. Thus, to achieve . 10% loss in detection
rate, it suffices that F̄ . 1% [41].

Quite remarkably, we find that the unfaithfulness of the un-
calibrated inspiral EOB waveform is < 0.1%, with a negligi-
ble loss in detection rate due to modeling error. The agree-
ment is of course better for the inspiral EOBNR waveforms
(i.e., EOBNRv2, SEOBNRv1, SEOBNRv2) (F̄ < 0.02%,
left panel), and F̄ < 0.2% for the IMR EOBNR waveforms
(right panel). The closeness of all inspiral EOBNR waveforms
strongly suggests that the different calibrations and variations
in the dynamics and energy fluxes of those EOBNR mod-
els [20, 42, 43] do not impact the low-frequency part of the
waveforms, but affect (in a minor way) only the last stages
of the inspiral and the merger. The unfaithfulness of the
time- and frequency-domain inspiral-only PN Taylor approx-
imants varies between 0.1% and 10% depending on the bi-
nary’s total mass and the PN approximant used 4. In particu-
lar, Taylor-T4, which has the best agreement with NR in the
equal-mass case [30], has the largest disagreement with the
new long q = 7 NR waveform. (The approximants Taylor-T2
and Taylor-F2 are not displayed, but lie between Taylor-T1
and Taylor-T4). The PhenomB and C models were fitted to
hybrids built with Taylor PN approximants and less accurate,
short NR waveforms, which may in part explain the large dis-
agreement we find.

The new long NR waveform covers the entire design-
aLIGO frequency band only for total mass M � 45.5M�;
for smaller M, the unfaithfulness calculations in Fig. 3 ne-
glect the lowest frequency portion of the waveform visible

4 The large unfaithfulness of some of the PN Taylor approximants is due to
differences in the evolution of the frequency and its first time derivative
during the late inspiral phase.

• Previous longest: 60 cycles 
• Pan et al., 2013: with NR errors at the time, 30 and 50 cycle EOB waveforms 

were indistinguishable to aLIGO

• Szilagyi et al., 2015 (Numerical relativity reaching into post-Newtonian territory: 
a compact-object binary simulation spanning 350 gravitational-wave cycles)

NR error



Lowest orbital frequency

• Lousto and Zlochower, 2013 
(Exploring the Outer Limits of 
Numerical Relativity) 

• LazEv code 

• Equal mass, non-spinning
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FIG. 15: Comparison of 3.5PN and full numerical waveforms
for the D = 20M, 50M, 100M generation 1 simulations. Note
the excellent agreement in both amplitude and phase and the
very small scale of the amplitudes.

rations in order to evaluate how numerical techniques
developed for close binaries (initial separations of around
R ⇠ 10M) handle this regime. We studied a prototypical
binary with an initial separation of D = 100M . Given
the large orbital period involved (T ⇡ 6400M), we re-
stricted our evolutions to the first few orbits. We find
that the full numerical simulations agree with the post-
Newtonian predictions for the gravitational waveform,
orbital frequencies, orbital decay rate, and radiated en-
ergy. These are nontrivial features given the length scales
involved in the problem and the very small amplitude of
the radiation.

From these first studies we can draw several conclu-
sions:
i) The initial pulse of spurious radiation (and gauge re-
laxation) still requires a period of the order of one orbital
cycle to settle (that seems to be quite independent of the
initial orbital radii). This implies longer evolution times
to obtain accurate waveform information. Alternatively,
one could use initial data with some information of the
realistic radiation content along the lines of Ref. [59].
ii) Given the long evolution times required and the long
wavelengths involved, the location of the computational
boundaries should allow for the extraction of radiation
at (at least) one wavelength from the sources. We note
that more e�cient techniques to treat the evolution in
this far zone include the use of more accurate boundary
conditions [60], multi-patch schemes [61], and the choice
of coordinates that are better adapted to the problem
[17].
iii) A pure 3.5PN evolution indicates that this binary
will take approximately t ⇠ 8.2 ⇥ 106M to inspiral to
an orbital separation of D = 5M . During this inspiral,
the binary would complete 2064 orbits. Our full numeri-
cal simulations on 20 nodes (3.46GHz dual Intel proces-
sors with 6 cores each) produced an average evolution
of nearly 100M per day. This would led to a total of
over 200 years to complete the evolution. Dramatic im-
provements in the speed of the evolution codes, possibly
using use hardware accelerators [62], or novel numerical
techniques, such as implicit-explicit methods [63], will be
needed in order to make simulations from these separa-
tions to mergers possible.
iv) Based on the generation 1 results and our results
in [52], we can foresee a generation 2 set of runs that
use the current runs to reduce eccentricity using for in-
stance the method [50], have the computational bound-
aries moved to even larger radii (which would require
setting �1 to a smaller value), use higher-order AMR
prolongation and numerical dissipation, and replace the
semiproper distance with the proper distance of the short-
est geodesic joining the two horizons.

We note that the eccentricity reduction method of [50],
when applied to ṡ(t) for the D = 100M configuration,
gives a very small change in the initial tangential mo-
mentum and a very large change in the initial radial mo-
mentum. In particular, we find �pt/pt = 6.056 ⇥ 10�6

and �pr/pr = 18.6. The latter result is surprising as
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FIG. 13: The waveform extracted at di↵erent observer loca-
tions for the D = 20M generation 1 run. Here the waveforms
have been extrapolated to 1 using Eq. (12). While we see
that the extraction at Robs = 100 has large phase errors, the
phases and amplitudes stabilize for Robs � 300, i.e. one wave-
length distance from the sources.
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FIG. 14: Comparison of r 4 and the Null variable  for the
D = 50M simulation. The boxes indicate regions where the
fast Fourier transform smoothing operation on the CCE data
distorted the waveform.

riod increases (See Eqs. (2-4)) approximately as ⇠ D3/2

hence we need observer locations of at least Robs/M =
1150 and Robs/M = 3200, respectively, for binaries with
separations D/M = 50 and D/M = 100. In Fig. 14, as
an independent validation of the finite radius extraction,
we compare the perturbative extraction as defined above
(12) with the Cauchy characteristic extraction (CCE)
code described in Ref. [58] and observe the good agree-
ment among them in the common region of validity.

We find a striking agreement (particularly at larger
separations) between these full numerical waveforms and
the PN waveforms given by Eq. (9). In Fig. 15 we plot

TABLE IV: Energy and angular momentum radiated per or-
bit (initial and second).

D �m/Mnum �m/MPN

20M (5.68± 0.02)⇥ 10�5 5.43� 5.62⇥ 10�5

50M (2.4± 0.1)⇥ 10�6 2.52� 2.53⇥ 10�6

100M (2.3± 0.4)⇥ 10�7 2.36� 2.36⇥ 10�7

D �J/M2
num �J/M2

PN

20M (5.39± 0.01)⇥ 10�3 5.20� 5.30⇥ 10�3

50M (8.9± 0.1)⇥ 10�4 9.16� 9.18⇥ 10�4

100M (2.4± 0.4)⇥ 10�4 2.39� 2.39⇥ 10�4

R 4 extrapolated using Eq. (12) and the 3.5PN [55] pre-
diction. The di↵erences in the phase and amplitudes are
within the numerical noise. For the D = 20 case, we
still observe improvements between the 2PN expression,
as truncated in Eq. (7), and the 3.5PN expression. At
the larger initial separations, D = 50M, 100M , even the
lower-order PN expressions [i.e. Eq. (7)] show excellent
agreement with the full numerical waveform.
We note that based on the generation 0 convergence

simulations, we may expect that the orbital phase error
in the D = 100M simulation run is under 0.025 rad (the
argument being that the generation 1 simulations should
be more accurate at a given resolution than the gener-
ation 0 simulations). Based on the observed agreement
between the PN and NR simulation, it appears that the
phase error is indeed (relatively) small.
Finally, we give the energy and angular momentum ra-

diated, per orbit, in Table IV. For the table, we measure
the energy and angular momentum radiated over one pe-
riod of the (` = 2,m = 2) mode (however, we use all
modes up to ` = 4 to calculate the energy and angular
momentum radiated), we then multiply by 2 (we do this
because we do not have two full cycles at Robs = 3000M
for D = 100M). We approximate the error in these mea-
surements by calculating �m and �J at Robs = 3000M
(Robs = 1600M for D = 20M) and Robs = 1500M
(Robs = 800M for D = 20M) and take the di↵erence
between these two measurements as the error. We com-
pute the energy and angular momentum radiated at the
initial separation and after one orbit including the radial
decay given by �r ⇡ h

dar
dt iT, where [56]

⌧
dar
dt

�
= �
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V. DISCUSSION

We performed a first exploration of full numerical evo-
lutions of a black-hole binaries with large initial sepa-

• Started 4000 GW cycles before 
merger 

• Evolved for 3 cycles (no merger) at D = 
100 M



Highest spins

• Simulations: 

• q=1, aligned 𝞆1=𝞆2=0.994, 50 cycles 
(highest spin ever simulated) 

• q=1, aligned 𝞆1=𝞆2=0.99, 50 cycles 

• q=1.5, 𝞆1=0.99 (aligned), 𝞆2=0.2 
misaligned, 46 cycles 

• NR phase error smaller than difference with 
PN and EOB approximants for 𝞆=0.994
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FIG. 5. Spin magnitude as a function of time for S
++

0.99
. At

early times, the spin of one of the apparent horizons is shown
at resolutions N = 2 (black solid), N = 3 (red dotted) and
N = 4 (blue dashed). A closeup of early times is shown in the
upper inset. At late times, the spin of the merged apparent
horizon is shown as a function of time for the same resolutions,
and a closeup of late times is shown in the lower inset.

the di↵erence between the two highest resolution simula-
tions.

The radiated energy fraction Erad is the relative change
in energy of the binary from t = �1 to t = 1 and can
be computed from

Erad ⌘ 1 �
E1
E�1

= 1 �
Mf

M
. (20)

The final Christodoulou mass Mf is the energy of the
system at t = 1, because the remnant is in equilibrium
at the end of the simulation; the total Christodoulou
mass M at t = trelax is the energy of the system at
t = �1, because the individual black-hole masses change
by less than one part in 106 between t = �1 and
t = trelax (see, e.g. Eq. 14 in Ref. [78]). We find that
Erad = 11.26593(3)%, where the uncertainty is again the
di↵erence between the two highest resolutions.

The formulas from Ref. [41] predict �f = 0.94933(8)
and a radiated energy fraction Erad = 11.24(2)%, in good
agreement with the simulations. While the fractional dif-
ferences between the measured and predicted values are
small, their uncertainty intervals are disjoint, i.e. our
measurements lie outside the uncertainty interval of the
formulas. This is because the error estimates in Ref. [41]
did not account for the observed correlated trends in the
fit residuals (as seen in the lower panels of Figs. 6 and 8
of Ref. [41]). As a result, extrapolating these formulas to
initial spins above � = 0.97 is expected to overestimate
the final spin (see Fig. 6 in Ref. [41]) and underestimate

FIG. 6. Convergence test for S
++

0.994
. Labels are the same

as for Fig. 4. For N 6= 5, the simulations were started at
tbranch = 1414M , using the N = 5 solution as initial data.

the final radiated energy (see Fig. 8 in Ref. [41]), and this
is what we find with S

++

0.99
.

B. Equal-mass, aligned spins � = 0.994

We repeated the equal-mass aligned-spin simulation
above, but with a larger spin. We refer to this case as
S

++

0.994
. The initial data were chosen with � = 0.995 for

each black hole, but the spins drop to � = 0.9942 af-
ter about t = 10M of evolution time, a much smaller
timescale than the relaxation time trelax (this rapid ini-
tial decrease in spin can also be seen for S

++

0.99
in the

upper inset of Fig. 5). The simulation S
++

0.994
represents

the largest spin ever simulated for a black-hole binary. It
has M!orb = 0.0157 at t = trelax, and then proceeds
through 25 orbits, merger, and ringdown. The high-
est resolution completed in approximately 71 days on 48
cores. Note that this simulation, S

++

0.994
, was computa-

tionally cheaper than the lower-spin simulation, S
++

0.99
,

and achieved a smaller overall phase error (see Figs. 4
and 6). This is due to code optimization that was done
between the time that the S

++

0.99
and S

++

0.994
simulations

were carried out; for the same version of SpEC, there
is actually a steep increase in computational cost as a
function of spin.

Obtaining convergence was more di�cult for this sim-
ulation than for S

++

0.99
. The reason is that it is di�cult

to fully resolve the initial transients, sometimes called
“junk radiation”, that result from imperfect initial data.
If these transients are unresolved, then the small changes
in masses, spins, and trajectories caused by these tran-
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FIG. 15. The number of gravitational-wave cycles as a func-
tion of the initial spin �, measured after the initial relax-
ation, for simulations S

++

0.99
and S

++

0.994
and (for compari-

son) simulations S
++

0.8
[41], S

++

0.85
[41], S

++

0.9
[41], S

++

0.95
[41],

S
++

0.96
[50], S++

0.97
[37], and S

++

0.98
[24]. Upper panel: The num-

ber of gravitational-wave cycles of h22 accumulated between a
gravitational-wave frequency M!22 = 0.036 and merger (i.e.,
the time when the amplitude of h22 peaks). The dashed line
is a linear fit to the data. Lower panel: Fractional di↵erence
(“residual”) between our results and the linear fit, with un-
certainties for simulations except S++

0.85
(which we ran at only

one resolution) estimated as di↵erences between medium and
high numerical resolutions.

software package [88–90]. The TaylorT1, TaylorT4,
and TaylorT5 approximants were constructed using
the PostNewtonian module in GWFrames.5 The EOB
approximants were constructed using SEOBNRv2 [49]
from the LIGO Algorithm Library, with the func-
tion SimIMRSpinAlignedEOBWaveform modified to re-
turn h22(t). Physical parameters for the approximants
were taken from the highest resolution from each sim-
ulation at the relaxation time. Because SEOBNRv2

is strictly valid only for non-precessing systems, and
therefore accepts only scalar values of the spins as in-
put, it is not obvious what to input for the case of
S

0.99

0.20
. We pass the z-component of the spins into

SimIMRSpinAlignedEOBWaveform. If instead we pass the

5
To our knowledge, the PostNewtonian module includes all terms

currently found in the literature. Non-spin terms are given up

to 4.0 PN order for the binding energy [13, 91]; 3.5 PN with

incomplete 4.0 PN information for the flux [13]; and 3.5 PN for

the waveform modes [92–94]. The spin-orbit terms are given to

4.0 PN in the binding energy [95]; 3.5 PN with incomplete 4.0

PN terms in flux [96]; and 2.0 PN in the waveform modes [89].

Terms quadratic in spin are given to 2.0 PN order in the binding

energy and flux [97, 98], and waveform modes [89, 97, 99].

FIG. 16. Phase di↵erences �� of h22 as a function of retarded
time before merger for S

++

0.99
. Shown are di↵erences between

the highest numerical resolution and several analytic approx-
imants. Di↵erences between the highest numerical resolution
and other numerical resolutions are shown for comparison.
The waveforms are aligned in the time interval delimited by
the black triangles.
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FIG. 17. Phase di↵erences �� of h22 between numerical
and approximant data for S

++

0.994
. Labels are the same as for

Fig. 16.

spin magnitudes, we see larger disagreements between the
EOB and numerical waveforms for S

0.99

0.20
, likely due to a

change in the strength of spin-orbit coupling. We will see
below that non-precessing EOB agrees remarkably well
with S

0.99

0.20
despite the mild precession of this simulation.

In Figs. 16, 17, and 18, we show for S
++

0.99
, S

++

0.994
, and

S
0.99

0.20
(respectively) the phase di↵erence �� of h22 be-

tween the highest numerical resolution and the PN and
EOB approximants. We also include �� between the
highest numerical resolution and other numerical reso-
lutions for comparison. To compute ��, we first align
each waveform with the highest resolution numerical-
relativity (NR) waveform using the procedure prescribed

• Scheel at al. 2014 (Improved methods for simulating nearly 
extremal binary black holes) 

• Superposed Kerr-Schild initial data to exceed the 
Bowen-York limit 

• SpEC code with improved numerical methods and code 
optimisation



Highest mass ratio

• q = 100 (1 orbit), Nakano et al., 2011 (Intermediate-mass-ratio black 
hole binaries II: Modeling Trajectories and Gravitational Waveforms) 

• q = 18, 7 orbits, non-spinning (Varma et al., 2014) 

• [Preliminary] q = 18, 8 orbits, 𝞆1 = -0.8



Recent Results



Energy and Angular Momentum Comparison

• Radiated E and J 
computed from 
NR simulations 
using SpEC and 
Llama codes and 
compared with 
EOB 

• See talk by 
Alessandro 
Nagar (next)
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FIG. 2: Energetics for q = 1, nonspinning binary: comparison
between NR data, the 4PN, Taylor-expanded, curve and two
EOB curves, one with and the other without a radial part of
the radiation reaction Fr∗ . The choice Fr∗ = 0 displays the
smallest (∼ 10−4) discrepancy with NR data up to merger
(indicated by colored markers).
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FIG. 3: Same comparison of Fig. 2 for q = 2 Llama data.

is the main deformation parameter of EOB theory, which
varies between ν = 0, in the large-mass-ratio limit
(q = m1/m2 ≫ 1) and ν = 1/4 in the equal-mass case.
The dimensionless gravitational potential uc is defined as
uc = M/rc in terms of the EOB centrifugal radius

rc ≡
√

r2 + a2 +
2Ma2

r
+ δa2(r) . (3)

Here the (next-to-leading-order) correction of the Kerr
parameter, δa2(r) [12], is defined in Eq. (59) of Paper I.
Contrary to Paper I, where we had phenomenologically

fixed the 4PN coefficient ac5(ν) to the (ν-independent)
fiducial value ac5 = 23.5, we use here the exact, ν-
dependent, analytical expression of ac5(ν) obtained in
Ref. [32]. We recall that the orbital EOB radial potential
Aorb is defined by Padé resumming APN

orb(uc) as

Aorb(uc; ν; a
c
6) = P 1

5 [A
PN
orb(uc)]. (4)

In view of the change in the analytical expression of Aorb,
our first task will be to provide a new calibration of the
single, effective 5PN parameter ac6(ν) entering Aorb. We
perform this calibration by using a sample of nonspinning
waveforms. [This nonspinning-calibrated orbital poten-
tial will then be used as is in our spinning EOB model].
We use as calibrating waveforms eight SXS simulations
with mass ratio q = (1, 1.5, 2, 3, 4, 5, 6, 8). We tune a6(ν)
so that the EOB and NR phasing agree (after a suitable
alignment) within the NR phasing error at NR merger.
Following the footsteps of Ref. [33] we got

ac6(ν) = 3097.3 ν2 − 1330.6 ν + 81.38. (5)

Note that ac6(ν) varies between −57.69 for ν = 0.25
(equal-mass case) and −19.82 for q = 8 (ν = 8/81 ≈
0.099). Figure 1 illustrates the EOB/NR phase agree-
ment, for q = 1 when using the longest NR wave-
form available in the catalog, SXS:BBH:0002, that cor-
responds to about 32 orbits up to merger. Let us how-
ever stress that the actual calibration of ac6(ν) did not
use (for q = 1) this long waveform, but instead the
shorter one SXS:BBH:0066. When aligned on the time
interval corresponding to dimensionless GW frequencies
(MωL,MωR) = (0.0235, 0.05) (indicated by the dashed
vertical lines in the plot) the phase difference between
SXS:BBH:0002 and EOB, accumulated up to NR merger,
∆φEOBNR

mrg ≡ φEOB
mrg − φEOB

NR = 0.04 rad is comparable to
the NR uncertainty at merger, ≈ 0.066 rad (see Table I).
Similarly, when using ac6(ν) as given by Eq. (5), one finds
that the EOB-NR phase difference is compatible with
the NR uncertainty at merger for all 9 nonspinning data
(compare columns seven and eight in Table I).

IV. ENERGETICS OF NONSPINNING
COALESCENCES: THE CHOICE Fr∗ = 0

A. Energetics with (nonspinning) Llama data

Having used SXS phasing data to determine the re-
lation Eq. (5), let us now turn to discussing the ener-
getics of the model, motivating, in particular, the choice
of a vanishing radial component of radiation reaction,
Fr∗ = 0. The choice Fr∗ = 0 was made in Paper I, as well
as in Refs. [26, 34–36], and we carry it over in the present
analysis. As in previous works [26, 36, 37], the analysis
of the energetics is done via the gauge-invariant relation
between the dimensionless binding energy Eb and the di-
mensionless total angular momentum, j, Eb(j). These

• Nagar et al., 2015 (Energetics and phasing of nonprecessing spinning 
coalescing black hole binaries)



Precession Dynamics

• Ossokine et al., Jan 2015 

• 37 precessing simulations (from 
SXS catalogue) 

• Mass ratios up to 8, up to 2 
precession cycles (>~ 60 wave 
cycles) 

• Orbital angular momentum and 
spins agree between NR and PN 
to within 1 degree during inspiral 
and within 5 degrees at merger
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FIG. 1. Precession cones of the six primary precessing simulations considered here, as computed by NR and PN. Shown are
the paths traced on the unit sphere by the normal to the orbital plane ˆ̀ and the spin-directions �̂1,2. The thick lines represent
the NR data, with the filled circles indicating the start of the NR simulations. The lines connecting the NR data to the origin
are drawn to help visualize the precession-cones. The PN data, plotted with thin lines, lie on the scale of this figure almost
precisely on top of the NR data. (The PN data was constructed using the Taylor T4 approximant matched at frequency
m⌦m = 0.021067, with a matching interval width �⌦ = 0.1⌦m.)

PN parameters for a comparison with a given NR sim-
ulation. Section III presents our results, starting with
a comparison of the precession dynamics in Sec. IIIA,
and continuing with an investigation in the accuracy of
the orbital phasing in Sec. III B. The following two sec-
tions study the convergence of the PN precession equa-
tions and the impact of ambiguous choices when dealing
with incompletely known spin-terms in the PN orbital
phasing. Section III E, finally, is devoted to some tech-
nical numerical aspects, including an investigation into
the importance of the gauge conditions used for the NR
runs. We close with a discussion in Sec. IV. The appen-
dices collect the precise post-Newtonian expressions we
use and additional useful formulae about quaternions.

II. METHODOLOGY

A. Post-Newtonian Theory

Post-Newtonian (PN) theory is an approximation to
General Relativity in the weak-field, slow-motion regime,
characterized by the small parameter ✏ ⇠ (v/c)2 ⇠ Gm

rc2 ,

where m, v, and r denote the characteristic mass, veloc-
ity, and size of the source, c is the speed of light, and G

is Newton’s gravitational constant. For the rest of this
paper, the source is always a binary black-hole system
with total mass m, relative velocity v and separation r,
and we use units where G = c = 1.

Restricting attention to quasi-spherical binaries in the
adiabatic limit, the local dynamics of the source can be
split into two parts: the evolution of the orbital fre-
quency, and the precession of the orbital plane and the
spins. The leading-order precessional e↵ects [19] and
spin contributions to the evolution of the orbital fre-
quency [20, 21] enter post-Newtonian dynamics at the
1.5 PN order (i.e., ✏

3/2) for spin-orbit e↵ects, and 2 PN
order for spin-spin e↵ects. We also include non-spin
terms to 3.5 PN order [7], the spin-orbit terms to 4 PN
order [22], spin-spin terms to 2 PN order [21]1. For the
precession equations, we include the spin-orbit contribu-

1
During the preparation of this manuscript, the 3 PN spin-spin

contributions to the flux and binding energy were completed in

[23]. These terms are not used in the analysis presented here.

2

�0.4
0.0

0.4 �0.4
0.0

0.4

�0.4

0.0

0.4

x̂

ŷ
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FIG. 1. Precession cones of the six primary precessing simulations considered here, as computed by NR and PN. Shown are
the paths traced on the unit sphere by the normal to the orbital plane ˆ̀ and the spin-directions �̂1,2. The thick lines represent
the NR data, with the filled circles indicating the start of the NR simulations. The lines connecting the NR data to the origin
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precisely on top of the NR data. (The PN data was constructed using the Taylor T4 approximant matched at frequency
m⌦m = 0.021067, with a matching interval width �⌦ = 0.1⌦m.)

PN parameters for a comparison with a given NR sim-
ulation. Section III presents our results, starting with
a comparison of the precession dynamics in Sec. IIIA,
and continuing with an investigation in the accuracy of
the orbital phasing in Sec. III B. The following two sec-
tions study the convergence of the PN precession equa-
tions and the impact of ambiguous choices when dealing
with incompletely known spin-terms in the PN orbital
phasing. Section III E, finally, is devoted to some tech-
nical numerical aspects, including an investigation into
the importance of the gauge conditions used for the NR
runs. We close with a discussion in Sec. IV. The appen-
dices collect the precise post-Newtonian expressions we
use and additional useful formulae about quaternions.

II. METHODOLOGY

A. Post-Newtonian Theory

Post-Newtonian (PN) theory is an approximation to
General Relativity in the weak-field, slow-motion regime,
characterized by the small parameter ✏ ⇠ (v/c)2 ⇠ Gm

rc2 ,

where m, v, and r denote the characteristic mass, veloc-
ity, and size of the source, c is the speed of light, and G

is Newton’s gravitational constant. For the rest of this
paper, the source is always a binary black-hole system
with total mass m, relative velocity v and separation r,
and we use units where G = c = 1.

Restricting attention to quasi-spherical binaries in the
adiabatic limit, the local dynamics of the source can be
split into two parts: the evolution of the orbital fre-
quency, and the precession of the orbital plane and the
spins. The leading-order precessional e↵ects [19] and
spin contributions to the evolution of the orbital fre-
quency [20, 21] enter post-Newtonian dynamics at the
1.5 PN order (i.e., ✏

3/2) for spin-orbit e↵ects, and 2 PN
order for spin-spin e↵ects. We also include non-spin
terms to 3.5 PN order [7], the spin-orbit terms to 4 PN
order [22], spin-spin terms to 2 PN order [21]1. For the
precession equations, we include the spin-orbit contribu-

1
During the preparation of this manuscript, the 3 PN spin-spin

contributions to the flux and binding energy were completed in

[23]. These terms are not used in the analysis presented here.



Sub-dominant modes

• Calderón Bustillo et al. 2015 
(Comparison of subdominant 
gravitational wave harmonics between 
post-Newtonian and numerical relativity 
calculations and construction of multi-
mode hybrids) 

• Provides an algorithm for constructing 
hybrids with higher order modes 

• Uses waveforms from SXS and BAM 
codes, q=8 and q=18 

• See Juan Calderón Bustillo's talk after 
coffee break for an update
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FIG. 6. Amplitude (left) and real part (right) of non-spinning BAM q = 18 (2, 2), (2, 1) and (3, 3) modes hybridised with T1,
from top to bottom. We show PN (blue), NR (red) and hybrid (black) modes and focus on the hybridization region. The (2, 1)
mode is a typical example of good amplitude agreement and large ‘¸,m, while the (3, 3) mode is a typical example of small ‘¸,m

and poor amplitude agreement. Note the usage of di�erent blending windows from the one used for the (2, 2) mode.

contrary, the ratio for the (3, 3) mode shown in the lower
right panel features a strong secular trend, significantly
departing from 1 at high frequencies by a few 10%. We
observed the same behavior in the other relevant higher
modes (i.e. the (4, 3), (4, 4) and (5, 5)) not plotted here.
Some smaller (but still of the order of several percent)
disagreements are visible at low frequencies. The agree-
ment between the di�erent NR curves (extrapolated SXS
and the outermost extraction radius for BAM), at least to
a much higher degree than the disagreement between PN
and NR, and the fact that this discrepancy grows with

frequency suggest that the main source of error here is
that caused by the PN truncation.

We can analyze this further by looking at how the am-
plitude ratio varies with the PN order used to compute
the modes. Fig. 8 shows the ratio r¸m for the (2, 2) mode
and the (3, 3) mode (which exhibited di�erent behaviors
in Fig. 7) computed between the SXS extrapolated NR
modes and the PN ones including di�erent PN correc-
tions. We recall here that the (2, 2) mode amplitude is
known up to 3.5 PN while all the other modes are known
up to 3PN. [We note however that while this paper was in

2,2

2,1

3,3



Spin "flip-flop"

• Lousto and Healy, 
2015 (Flip-Flopping 
Binary Black Holes) 

• Lousto and Healy, 
2015 (Spin flips in 
generic black hole 
binaries) 

• LazEv code 

• Reproduction of PN 
spin dynamics 
using NR

2

FIG. 1. Directional evolutions of the spins and angular mo-
mentum in the initial coordinate frame (left) and in the non-

inertial ~L frame (right). Color Keys: red L̂, blue Ŝ1, green Ĵ .

tial puncture data for the binary black hole simulations.
We evolve these initial data sets using the LazEv [13]
implementation of the moving puncture approach [2].
For the runs presented here, we use centered, eighth-
order finite di↵erencing in space [14] and a fourth-order
Runge Kutta time integrator. Our code uses the Cac-

tus/EinsteinToolkit [15, 16] infrastructure. We use
the Carpet [17] mesh refinement driver to provide a
“moving boxes” style of mesh refinement. We locate the
apparent horizons using theAHFinderDirect code [18]
and measure the horizon spin using the isolated horizon
algorithm detailed in [19]. For the computation of the
radiated energy and linear momentum we use the formu-
las in [20] which are expressed directly in terms of the
Weyl scalar  4.

The full evolution required 2.5 million service units on
25 to 30 nodes of our local cluster “Blue Sky” with dual
Intel Xeon E5-2680 processors nearing 100M of evolution
per day. Our evolution is free and we verify its accuracy
by the satisfaction of the Hamiltonian and Momentum
constraints. All four L2-norm quantities remain well be-
low 10�8 until merger. Individual horizon masses m1

and m2 are preserved to a level of 2 and 1.4 parts in 105

respectively until merger. Spins grow linearly with time
until merger by a total increase of 1.5⇥10�4. Thus the to-
tal increase of the intrinsic spin magnitudes ↵i = Si/m2

i

are �↵1 = 6⇥ 10�4 and �↵2 = 6⇥ 10�4 from initial data
to merger.

The azimuthal precessional e↵ect and polar flip-flop
can be directly seen in the evolution of the spin com-
ponents of the black holes represented over a sphere in
Fig. 1. The e↵ect is apparent in the frame of the orbital
plane as well as the fixed initial set of coordinates.

Fig. 2 displays the angles that the secondary black
hole spin ~S1 forms with the precessing orbital angular
momentum ~L or with the fixed ẑ-axis as a function of
time. Both start originally aligned and by the time of
merger both display an almost total flip, around 160�.
Had we started the binary further separated apart this
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FIG. 2. The angle between the spin of the secondary black
hole ~S1 with respect to the orbital angular momentum ~L (left)
and with respect to the fixed z-axis (right). For comparison
we also plot the 3.5PN prediction.

TABLE II. Remnant properties and recoil velocity. The final
mass and spin are measured from the horizon, and the recoil
velocity is calculated from the gravitational waveforms. The
error in the mass and spin is determined by the drift in those
quantities after the remnant settles down. The error in the
recoil velocity is the di↵erence between first and second order
polynomial extrapolation to infinity.

Mrem/m |↵rem| Vrecoil[km/s]

0.94904± 0.00000 0.70377± 0.00002 1508.49± 16.08

↵x

rem ↵y

rem ↵z

rem

0.10815± 0.00003 �0.01986± 0.00000 0.69513± 0.00002

spin would continue to flip-flop between complete align-
ment and counter alignment as described in the next sec-
tion. We also compare our results with the corresponding
3.5 post-Newtonian (PN) integration of the equations of
motion and spin evolution [21, 22]. We observe a long
initial superposition of the PN and full numerical preces-
sion curves corresponding to the early 15000M of evolu-
tion of the binary, up to separations above around 15M .
As the merger proceeds and the evolution becomes more
dynamical we begin to observe the expected deviations
from each other, with the full numerical solution to gen-
eral relativity presenting a stronger flip-flop e↵ect.

Fig. 3 displays the leading waveform modes for the
strain. In the top panel is the characteristic chirp in
the (`,m) = (2, 2) mode, with an increasing amplitude
slightly modulated at around the orbital frequency due
to the nutation of ~L around the total angular momen-
tum ~J (See Fig. 1 in Ref. [23]). The lower panel shows
the azimuthal precessional e↵ect of ~L on the amplitude
of the (2, 1) mode, showing that we evolved for nearly
three precessional cycles (See Ref. [24] for a first discus-
sion relating this mode to precession in full numerical
simulations).

Table II displays the properties of the final rem-
nant formed after merger. Notably, the recoil reaches
1500km/s, and the orientation of the final spin changes
by only 1.62 degrees with respect to the initial direction
of the total angular momentum, as expected for compa-
rable mass binaries [25].
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Figure 2. Initial MOTSs and elementary cells for the 8-black-hole configuration,
projected to R3. The marginal surface corresponding to the black hole at infinity
encompasses the whole configuration. Note that the 8 cubical lattice cells are
isometric after the conformal rescaling.

Lattice cell edges after 
stereographic projection to R3

where the vectors Z1, Z2 and Z3 are initially equal to e1, e2 and e3 respectively, and their
components are assumed to be constant in time in the normal coordinate basis (Z1, Z2 and
Z3 are the coordinate basis vectors if we choose the initial coordinate system appropriately).
Note that the functions ak and a? are su�cient to reconstruct the metric tensor at any time:

� = a?(t)
2 (!1 ⌦ !1 + !2 ⌦ !2) + ak(t)

2!3 ⌦ !3, (2.19)

where !i is the dual co-frame of Zi, with constant components in a normal coordinate system
basis. The functions evolve according to:

äk
ak

=
2

3
E+, (2.20)

ä?
a?

= �1

3
E+. (2.21)

E+ is the only surviving component of the electric part of the Weyl tensor, given by

E+ = �3

2
Eij e

i
1 e

j
1 (2.22)

Eµ⌫ = Cµ↵⌫� n
↵
n
�
, (2.23)

n
µ being the normal to the constant time slice. According to [3] its evolution is likewise

governed by an ODE:

Ė+ = �3
ȧ?
a?

E+ (2.24)

so that the evolution of the geometry on the curve is completely decoupled from its sur-
roundings (in fact, the evolution of every single point on the curve is decoupled from all the
others), and quantities that only depend on the metric tensor on the curve can be evolved
using just the above system of ODEs (note that we will show in the following sections that
(2.24) is missing an essential term which causes this decoupling to fail).

Such a simplified scenario is particularly suitable for use as a numerical testbed, as one
can compare the results of a full three-dimensional numerical evolution to the functions ak,
a? and E+ defined above, and check to what extent the code reproduces the ODE system.
We illustrate the result of this comparison in the next section.

3 Numerical Relativity solution of an S3 black-hole lattice spacetime

3.1 Methods

We solve the full 3 + 1 Einstein equations for an S
3 lattice using Numerical Relativity,

allowing us to compute the metric everywhere, not just on the points of high symmetry. We
use the open-source Einstein Toolkit [11] and Cactus [12] framework. We compute various
lattice-related analysis quantities using a Cactus code generated using Kranc [13, 14] and the
xAct [15] tensor-manipulation package. Analysis of the numerical data was performed using
SimulationTools for Mathematica [16].

We focus on the tesseract configuration, in which 8 identical black holes are arranged
regularly on S

3. To simplify the numerical treatment, we carry out the stereographic projec-
tion, introduced in [2], from S

3 to R
3, where one of the black holes, with bare mass m1 = 4M

– 4 –

where the vectors Z1, Z2 and Z3 are initially equal to e1, e2 and e3 respectively, and their
components are assumed to be constant in time in the normal coordinate basis (Z1, Z2 and
Z3 are the coordinate basis vectors if we choose the initial coordinate system appropriately).
Note that the functions ak and a? are su�cient to reconstruct the metric tensor at any time:

� = a?(t)
2 (!1 ⌦ !1 + !2 ⌦ !2) + ak(t)

2!3 ⌦ !3, (2.19)

where !i is the dual co-frame of Zi, with constant components in a normal coordinate system
basis. The functions evolve according to:

äk
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• Claim in literature: Einstein equations reduce 
to ODEs for metric and electric Weyl on 
edge:

but full 3D numerical relativity evolution 
disagrees (NR error bars negligible in plot)
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• Careful re-examination of ODE reduction argument reveals incorrect symmetry 
assumption.  Derived missing term in ODE:

(a) Comparison of Ė+ with the original
and new RHSs

(b) U11 and �2/3A com-
puted from NR

(c) � ⌘ 1 � (�2/3A)/U11

computed from NR at sev-
eral resolutions.

Figure 2: NR solution demonstrating consistency with the new analytic results

whereas A is defined via (3.6).
Figure 2a shows a comparison between Ė+ and the RHS of the original and new evolution

equations. We see that the addition of the term �3/2U11 is necessary for agreement. In figure
2b, we see that U11 and �2/3A are found to be indistinguishable, and figure 2c shows that
their relative di↵erence, � ⌘ 1� (�2/3A)/U11, converges to zero as the numerical resolution
n is increased. The convergence is 4th order, as expected from the finite di↵erencing order of
the code. � exhibits high-frequency noise for t < 40M which we attribute to error coming
from the finite precision with which floating point numbers are represented in the code3.
We have partially filtered the high frequency noise from the data in figure 2c to make the
convergence more apparent. For t > 40M, there are lower-frequency oscillations in the error
which we attribute to numerical reflections from mesh refinement boundaries.

For t > 20M, at the highest resolution, we see that |�| < 3⇥ 10�5. Hence

�2

3
A = 1.00000(3)U11 (5.2)

in agreement with the analytic derivation in section 4.2. For t < 20M, the ratio is still
consistent with �2/3, but the relative error is larger since U11 itself is small.

We therefore see that the anomaly originally measured in the comparison of the 3+1
Numerical Relativity results and the ODE system presented in [3] was due to the term U11

derived in the previous section, but taken to vanish in the original derivation.

5.2 Computation of U11 and fitting formula

We now present the NR computation of U11 on the edge, and give a simple fitting formula
for it that could be used along with (4.16) to solve the system via an ODE.

Figure 3 is a contour plot of log10(U11M3) as a function of t and �, the proper time
and the S3 angular coordinate along the edge, respectively. The black solid and dashed lines

3A depends on the third time derivative of a?, and an initial relative roundo↵ error of ✏ ⇠ 10�15 with
frequency ! ⇠ ⇡/�t ⇠ 80, for �t the time spacing of output data points, will be amplified by a factor of
a?/

...
a?!

3 when taking a third derivative, which leads to a relative error in
...
a? comparable with that observed

for the measured values of a? ⇠ 102 and
...
a? ⇠ 10�7.
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1 �
2

�
4

�
6

(t/M)3 7·040(1) ⇥10�13 �3·558(6)⇥10�12 4·23(4)⇥10�12 �2·30(7)⇥10�12

(t/M)5 �3·810(2) ⇥10�17 2·361(9)⇥10�16 �4·37(6)⇥10�16 3·1(1) ⇥10�16

(t/M)7 1·0965(9)⇥10�21 �6·85(3) ⇥10�21 1·30(2)⇥10�20 �9·8(3) ⇥10�21

Table 1: Coe�cients of (t/M)p and �
q in the fitting formula for U11 determined from NR

The region 1M  t  10M contains localised regions of high relative numerical error,
but the small number of degrees of freedom in the fitting formula means that the fit is
insensitive to these localised regions. The region t  1M, in which the NR error dominates,
is outside the fit region, and hence the fitting formula is an extrapolation in this region.
For t > 10M, |�| < ⇡/8, i.e. the regions where U11 is not close to zero, this fitting function
approximates the NR result to within ±1%. In the regions t < 10M and |�| > ⇡/8, the
absolute agreement is within 10�12M�3.

For t � 10M, the NR and fitting-formula curves are visually indistinguishable.

5.3 Computation of U
(3)
11

We now wish to compute the third time derivative of U11 at � = 0 from the NR data and
compare with the analytic result obtained in (4.21). We cannot directly finite-di↵erence the
NR data near t = 0 because, as can be seen in figure 3, it is contaminated by numerical error.
Instead, we compute the derivative by analytically di↵erentiating the fitting formula. The
fitting e↵ectively averages out the very small numerical errors near t = 0 and uses information
from t > 0, where the errors are less significant, to obtain information about the derivative
at t = 0.

The fitting formula (5.3) contains only a finite number of terms, so the coe�cients
cannot be directly identified with the coe�cients in a Taylor series, and hence with the
derivatives of U11. However, as the number of terms in the fitting formula is increased, we
expect the coe�cients to approach the Taylor coe�cients. We find that as both pmax and
qmax are increased, c30 appears to converge exponentially towards a limiting value. Taking

this to be the Taylor coe�cient, we obtain an NR estimate for U
(3)
11 which can be directly

compared with the analytic value obtained from (4.21):

@
3
U11

@t3

����
t=0,�=0

=

(
4.3015(4)⇥ 10�12M�6 Numerical

4.30113⇥ 10�12M�6 Analytic .
(5.4)

The NR error estimate in parentheses includes the e↵ect of both numerical truncation error
and of fitting using a finite number of terms, and we see that the NR derivative matches the
analytical calculation within NR errors. We therefore have a high degree of confidence that
the numerical solution and our understanding of the analytical system are correct.

5.4 E↵ect of U11

In figure 4, we show the relative di↵erence between ak computed from NR and from the
original ODE, and compare it with the leading order analytic contribution computed in
section 4.4 from the Taylor series. We see that the relative di↵erence is dominated by the
leading order term for as long as the NR computation lasts. We do not know whether this
will continue past t = 110M.
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where we have assumed above that the first coordinate x1 is aligned along the curve and x
2
, x

3

are transversal. We have introduced here a short hand notation for the partial derivatives in
the form of  (p,q,r) = @p

@(x1)p
@q

@(x2)q
@r

@(x3)r . Substituting the conformal factor  from equation

(3.2), we obtain that the numerical value of U (3)
11 (0) at the midpoint of the edge is 4.3⇥10�12.

4.4 E↵ect of U11 on the metric

The addition of the term �3/2U11 to the ODE clearly a↵ects the evolution of ak and a?.
We can estimate the e↵ect by making a Taylor expansion of ak(t) and a?(t) about t = 0 and
using the evolution equations (2.21), (2.20) and (4.16) to evaluate the Taylor coe�cients at
t = 0. We find that the e↵ect of U11 appears first in the O(t6) term. Using an overbar to
represent the solution using the original ODE (2.24), i.e. without the U11 term, we find

�ak = ak � āk = �
ak(0)

720
U

(3)
11 (0)t6 +O(t8) , (4.22)

�a? = a? � ā? =
a?(0)

1440
U

(3)
11 (0)t6 +O(t8) . (4.23)

(4.24)

where we have used the fact that a?, ak and E+ have the same value at t = 0 independent
of the appearance of U11 in the ODE.

At the midpoint of the edge, at t = 110M, we find a relative error �ak/ak of about
1% compatible with the NR results in figure 1c, and a relative error of 100% by t = 235M.
We conclude that the leading order contribution to U11 leads to a complete breakdown of
the original ODE solution by this time, though we cannot determine whether higher order
corrections are important here.

5 Numerical Relativity calculation of U11

5.1 Consistency between NR and new analytical results

In the previous section, we identified a term, �3/2U11, in the evolution equation for Ė+ which
was assumed in [3] to vanish, but for which we find a nonvanishing third time derivative. We
now aim to verify that the NR solution satisfies the new evolution equation (4.16), and that
the numerically-non-zero anomaly A is indeed related to U11 by (4.17). U11 is computed in
NR from covariant derivatives of the extrinsic curvature,

U11 = (Kij;k
k �Kik;j

k) ei1 e
j
1 . (5.1)
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• A tedious Mathematica calculation eventually 
proved analytically that U11 has a non-zero 3rd 
time derivative at t=0. Discrepancy grows as t6. 

• Verified value with NR to 4 digits of precision
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(c) � ⌘ 1 � (�2/3A)/U11

computed from NR at sev-
eral resolutions.

Figure 2: NR solution demonstrating consistency with the new analytic results
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3A depends on the third time derivative of a?, and an initial relative roundo↵ error of ✏ ⇠ 10�15 with
frequency ! ⇠ ⇡/�t ⇠ 80, for �t the time spacing of output data points, will be amplified by a factor of
a?/

...
a?!

3 when taking a third derivative, which leads to a relative error in
...
a? comparable with that observed

for the measured values of a? ⇠ 102 and
...
a? ⇠ 10�7.
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• NR shows that this perfectly accounts for the 
anomaly

The equation above, contracted with respect to the two last indices, yields

Uij = �⌘
pl

j Bip;l, (4.14)

which has exactly the same structure as (4.10), i.e. Uij is proportional to the curl of Bij .
Now, repeating the reasoning we have used for Bij above we may prove that the trace of
(4.14) vanishes because of the symmetry of Bij .1

U
i
i = 0. (4.15)

4.2 The reduced evolution equations

Consider the tangent space at a point along a LDRRS curve �. We rewrite (2.1)–(2.2) and
(4.7) assuming conditions (2.14)–(2.16) to hold and parametrizing the metric according to

(2.17)–(2.18). We first note that the antisymmetric part of U k
ijk must vanish because of

(2.16). Since it is also traceless it must be proportional to U11 (see (2.15)). We obtain
(2.20)–(2.21), where E+ is the non-vanishing part of the electric Weyl tensor, but (2.24) now
takes the form of

Ė+ = �3 ȧ?
a?

E+ � 3
2U11, (4.16)

with U11 = Uij e
i
1 e

j
1 (notice that numeric indices always indicate frame components). In [3],

the authors assume that this term vanishes due to the rotation and reflection invariance.2

We will show that this is not the case in general. As a result, we will identify this term with
the anomaly A found numerically in section 3.2;

A = �3

2
U11 . (4.17)

First let us consider the magnetic part of the Weyl tensor. Since Bij is composed of
rotation-invariant ⌘ijk and Kij;k it is rotation-invariant itself. Being additionally traceless
and symmetric it must be proportional to B11 due to (2.15). From (4.10) we obtain

B11 = K12;3 �K13;2 = 2Ki[2;3] e
i
1 (4.18)

Since e1 is both rotation- and reflection-invariant, the last expression is the (2, 3) component
of a rotation- and reflection-invariant rank 2 antisymmetric tensor, so it must vanish at �

because of (2.16).
Now, since Uij is also traceless and is given by a very similar expression (4.14) to Bij ,

it would be tempting to repeat the argument above and conclude that U11, together with
the whole symmetric part of Uij , vanishes too. This would however be incorrect due to the
following: unlike Kij appearing in (4.10), Bij in (4.14) is not reflection-invariant. Note that
since its definition (4.10) involves the volume form ⌘ijk it changes its sign under reflections
(2.11)–(2.13). Although U11 can be put in a similar form to (4.18):

U11 = �2Bi[2;3] e
i
1 (4.19)

1Note however that Uij does not have to be symmetric in general, unlike Bij .
2It corresponds to the term proportional to ✏

��(↵ e�

⇣
H

�)
�

⌘
in equation (2.15) in the aforementioned paper.

If it does not vanish then it appears later in the evolution equation (4.11).
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where the vectors Z1, Z2 and Z3 are initially equal to e1, e2 and e3 respectively, and their
components are assumed to be constant in time in the normal coordinate basis (Z1, Z2 and
Z3 are the coordinate basis vectors if we choose the initial coordinate system appropriately).
Note that the functions ak and a? are su�cient to reconstruct the metric tensor at any time:

� = a?(t)
2 (!1 ⌦ !1 + !2 ⌦ !2) + ak(t)

2!3 ⌦ !3, (2.19)

where !i is the dual co-frame of Zi, with constant components in a normal coordinate system
basis. The functions evolve according to:

äk
ak

=
2

3
E+, (2.20)

ä?
a?

= �1

3
E+. (2.21)
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µ being the normal to the constant time slice. According to [3] its evolution is likewise

governed by an ODE:
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so that the evolution of the geometry on the curve is completely decoupled from its sur-
roundings (in fact, the evolution of every single point on the curve is decoupled from all the
others), and quantities that only depend on the metric tensor on the curve can be evolved
using just the above system of ODEs (note that we will show in the following sections that
(2.24) is missing an essential term which causes this decoupling to fail).

Such a simplified scenario is particularly suitable for use as a numerical testbed, as one
can compare the results of a full three-dimensional numerical evolution to the functions ak,
a? and E+ defined above, and check to what extent the code reproduces the ODE system.
We illustrate the result of this comparison in the next section.

3 Numerical Relativity solution of an S3 black-hole lattice spacetime

3.1 Methods

We solve the full 3 + 1 Einstein equations for an S
3 lattice using Numerical Relativity,

allowing us to compute the metric everywhere, not just on the points of high symmetry. We
use the open-source Einstein Toolkit [11] and Cactus [12] framework. We compute various
lattice-related analysis quantities using a Cactus code generated using Kranc [13, 14] and the
xAct [15] tensor-manipulation package. Analysis of the numerical data was performed using
SimulationTools for Mathematica [16].

We focus on the tesseract configuration, in which 8 identical black holes are arranged
regularly on S

3. To simplify the numerical treatment, we carry out the stereographic projec-
tion, introduced in [2], from S

3 to R
3, where one of the black holes, with bare mass m1 = 4M
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Summary

• NR BBH simulations up to q=18, or 350 cycles, or 
S/m2=0.994.  Pick any one! 

• Recent results on: 

• Energy and Angular Momentum Comparison 

• Precession Dynamics 

• Sub-dominant modes 

• Spin "flip-flop" 

• Cosmology: Black hole lattices


